Skip to main content
Log in

Effect of O2 flow rate in the annealing process on metal–insulator transition of vanadium oxide thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Vanadium oxide (VOx) thin films were fabricated on the sapphire substrates by sputtering deposition and subsequent rapid-thermal-annealing (RTA) process. The effect of O2 flow rate on the crystal structure, surface morphology and phase transition property of thin films was studied. The results indicated that VOx thin films were polycrystalline structures and consisted of irregular blocky-shaped grains. As the O2 flow rate increased from 3 to 4.5 slpm, the oxidation was enhanced and the grain size decreased gradually. In addition, when we increased O2 flow rate, phase transition amplitude increased from 5.4 to 117 and the phase transition temperature decreased from 50.45 °C to 45.37 °C. The hysteresis width almost increased as O2 flow rate increased. More interesting, we found that the value of \(d\lg {\text{R}}_{\square } /dT\) became big at high temperature which could be attributed to the phase transition and the variation trend of difference was in line with the phase transition amplitude. So, it could be concluded that O2 flow rate in the RTA process played a significant role in the properties of VOx thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. Limelette, A. Georges, D. Jerome, P. Wzietek, P. Metcalf, J.M. Honig, Science 302, 89–92 (2003)

    Article  Google Scholar 

  2. Z.S. El Mandouh, M.S. Selim, Thin Solid Films 371, 259–263 (2000)

    Article  Google Scholar 

  3. Y.Y. Luo, L.Q. Zhu, Y.X. Zhang, S.S. Pan, S.C. Xu, M. Liu, G.H. Li, J. Appl. Phys. 113, 183520 (2013)

    Article  Google Scholar 

  4. E.M. Heckman, L.P. Gonzalez, S. Guha, J.O. Barnes, A. Carpenter, Thin Solid Films 518, 265–268 (2009)

    Article  Google Scholar 

  5. M.M. Rahman, J.Z. Wang, N.H. Idris, Z.X. Chen, H.K. Liu, Electrochim. Acta 56, 693–699 (2010)

    Article  Google Scholar 

  6. T. Driscoll, H.T. Kim, B.G. Chae, B.J. Kim, Y.W. Lee, N.M. Jokerst, S. Palit, D.R. Smith, M.D. Ventra, D.N. Basov, Science 325, 1518–1521 (2009)

    Article  Google Scholar 

  7. G. Seo, B.J. Kim, L.Y. Wook, H.T. Kim, Appl. Phys. Lett. 100, 011908 (2012)

    Article  Google Scholar 

  8. M.J. Lee, Y. Park, D.S. Suh, E.H. Lee, S. Seo, D.C. Kim, R. Jung, B.S. Kang, S.E. Ahn, C.B. Lee, Adv. Mater. 19, 3919–3923 (2007)

    Article  Google Scholar 

  9. Z.L. Huang, S.H. Chen, C.H. Lv, Y. Huang, J.J. Lai, Appl. Phys. Lett. 101, 191905 (2012)

    Article  Google Scholar 

  10. Z.L. Huang, S.H. Chen, B.Q. Wang, Y. Huang, N.F. Liu, J. Xu, J.J. Lai, Thin Solid Films 519, 4246–4248 (2011)

    Article  Google Scholar 

  11. M. Soltani, M. Chaker, E. Haddad, R.V. Kruzelecky, J. Margot, Appl. Phys. Lett. 85, 1958–1960 (2004)

    Article  Google Scholar 

  12. M.B. Sahana, M.S. Dharmaprakash, S.A. Shivashankar, J. Mater. Chem. 12, 333–338 (2002)

    Article  Google Scholar 

  13. D. Vernardou, M.E. Pemble, D.W. Sheel, Chem. Vap. Depos. 12, 263–274 (2006)

    Article  Google Scholar 

  14. D. Vernardou, D. Louloudakis, E. Spanakis, N. Katsarakis, E. Koudoumas, Sol. Energy Mater. Sol. Cells 128, 36–40 (2014)

    Article  Google Scholar 

  15. C. Ba, S.T. Bah, M. D’Auteuil, P.V. Ashrit, R. Vallee, A.C.S. Appl, Mater. Interfaces 5, 12520–12525 (2013)

    Article  Google Scholar 

  16. J.B.K. Kana, J.M. Ndjaka, P.O. Ateba, B.D. Ngom, N. Manyala, O. Nemraoui, A.C. Beye, M. Maaza, Appl. Surf. Sci. 254, 3959–3963 (2008)

    Article  Google Scholar 

  17. Z.F. Luo, X. Zhou, D.W. Yan, D. Wang, Z.Y. Li, C.B. Yang, Y.D. Jiang, Thin Solid Films 550, 227–232 (2014)

    Article  Google Scholar 

  18. L. Mathevula, B.D. Ngom, L. Kotsedi, P. Sechogela, T.B. Doyle, M. Ghouti, M. Maaza, Appl. Surf. Sci. 314, 476–480 (2014)

    Article  Google Scholar 

  19. J. Sakai, M. Zaghrioui, V.T. Phuoc, S. Roger, C. Autret-Lambert, K. Okimura, J. Appl. Phys. 113, 123503 (2013)

    Article  Google Scholar 

  20. Y.X. Guo, Y.F. Liu, C.W. Zou, Z.W. Qi, Y.Y. Wang, Y.Q. Xu, X.L. Wang, F. Zhang, R. Zhou, Appl. Phys. A 115, 1245–1250 (2013)

    Article  Google Scholar 

  21. J. Leroy, A. Bessaudou, F. Cosset, A. Crunteanu, Structural. Thin Solid Films 520, 4823–4825 (2012)

    Article  Google Scholar 

  22. R.E. Marvel, K. Appavoo, B.K. Choi, J. Nag, R.F. Haglund, Appl. Phys. A 111, 975–981 (2013)

    Article  Google Scholar 

  23. C. Zhang, W. Cao, A.V. Adedeji, H.E. Elsayed-Ali, J. Sol–gel Sci. Technol. 69, 320–324 (2013)

    Article  Google Scholar 

  24. J. Wu, W.X. Huang, Q.W. Shi, J.H. Cai, D. Zhao, Y.B. Zhang, J.Z. Yan, Appl. Surf. Sci. 268, 556–560 (2013)

    Article  Google Scholar 

  25. Y.J. Xu, W.X. Huang, Q.W. Shi, Y.B. Zhang, J. Wu, L.W. Song, J. Mater. Sci.: Mater. Electron. 24, 3823–3829 (2013)

    Google Scholar 

  26. L.L. Fan, S. Chen, Y.F. Wu, F.H. Chen, W.S. Chu, X. Chen, C.W. Zou, Z.Y. Wu, Appl. Phys. Lett. 103, 131914 (2013)

    Article  Google Scholar 

  27. S. Kittiwatanakul, J. Laverock, D. Newby, K.E. Smith, S.A. Wolf, J.W. Lu, J. Appl. Phys. 114, 053703 (2013)

    Article  Google Scholar 

  28. H.F. Zhang, Z.M. Wu, Q. He, Y.D. Jiang, Appl. Surf. Sci. 277, 218–222 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants 61471264 and 61101055). We thank the Analytical & Testing Center of Tianjin University for the XRD analysis.

Conflict of interest

We declare that there is not conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Ran Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Hu, M., Liang, JR. et al. Effect of O2 flow rate in the annealing process on metal–insulator transition of vanadium oxide thin films. J Mater Sci: Mater Electron 26, 6920–6925 (2015). https://doi.org/10.1007/s10854-015-3310-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3310-y

Keywords

Navigation