Skip to main content
Log in

Effect of different type of scavengers on the photocatalytic removal of copper and cyanide in the presence of TiO2@yeast hybrids

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Effect of different type of organic or inorganic additions (formic acid, AgNO3, NaCl) on the photocatalytic reduction of copper and photooxidation of cyanide with illuminated TiO2@yeast was studied in this work together with the impact of solution pH values and contact time. The results indicated that pH values exhibited a great effect on the adsorption and photocatalytic performance of cyanide and copper because the surface charge of the TiO2@yeast and the existence form of cyanide and copper are highly pH dependent. The optimal adsorption and photo-oxidation of cyanide was observed at pH 2.0 while the best adsorptive and photocatalytic efficiency for copper was achieved at pH 5.0 within the studied range. The addition of formic acid increased the photo-reduction rate of copper and inhibited the photo-oxidation of cyanide. AgNO3, as electron acceptor, restrained the Cu(II) reduction from 75.0 to 30.5 %, whereas accelerate the photo-oxidation of cyanide. Besides, the presence of chloride ions retarded the removal efficiency of both cyanide and copper. The first-order kinetic model well described the experimental data. One possible mechanism of the effect of additives on copper and cyanide degradation was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.A. Barakat, Y.T. Chen, C.P. Huang, Removal of toxic cyanide and Cu (II) Ions from water by illuminated TiO2 catalyst. Appl. Catal. B Environ. 53, 13–20 (2004)

    Article  Google Scholar 

  2. R.M. Felix-Navarro, S.W. Lin, A.B. Castro-Cecena, J.A. Casco-Carrete, Cyanide destruction and simultaneous recovery of copper with an electrochemical reactor. J. Electrochem. Soc. 150, D149–D154 (2003)

    Article  Google Scholar 

  3. J. Lu, D.B. Dreisinger, W.C. Cooper, Anodic oxidation of copper cyanide on graphite anodes in alkaline solution. J. Appl. Electrochem. 32, 1119–1129 (2002)

    Article  Google Scholar 

  4. F. Xie, D. Dreisinger, Recovery of copper cyanide from waste cyanide solution by LIX 7950. Miner. Eng. 22, 190–195 (2009)

    Article  Google Scholar 

  5. H.H. Law, W.L. Wilson, N.E. Gabriel, Separation of gold cyanide ion from anion-exchange resins. Ind. Eng. Chem. Res. 24, 236–238 (1985)

    Google Scholar 

  6. X. Dai, P.L. Breuer, M.I. Jeffrey, Comparison of activated carbon and ion-exchange resins in recovering copper from cyanide leach solutions. Hydrometallurgy 101, 48–57 (2010)

    Article  Google Scholar 

  7. X. Dai, P.L. Breuer, Cyanide and copper cyanide recovery by activated carbon. Miner. Eng. 22, 469–476 (2009)

    Article  Google Scholar 

  8. V. Augugliaro, V. Loddo, G. Marcì, M.J. López-Muñoz, Photocatalytic oxidation of cyanides in aqueous titanium dioxide suspensions. J. Catal. 166, 272–283 (1997)

    Article  Google Scholar 

  9. K. Chiang, R. Amal, T. Tran, Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide. Adv. Environ. Res. 6, 471–485 (2002)

    Article  Google Scholar 

  10. M.S. Kim, K.M. Hong, J.G. Chung, Removal of Cu (II) from aqueous solutions by adsorption process with anatase-type titanium dioxide. Water Res. 37, 3524–3529 (2003)

    Article  Google Scholar 

  11. S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. Acs Catalysis. 2(6), 949–956 (2012)

    Article  Google Scholar 

  12. B. Sun, Q.L. Li, W.X. Zhao, H.W. Li, L.J. Wei, P. Chen, White-light-controlled resistance switching in TiO2/α-Fe2O3 composite nanorods array. J. Nanopart. Res. 16(5), 1–6 (2014)

    Article  Google Scholar 

  13. B. Sun, W. Zhao, Y. Liu, P. Chen, White-light-controlled resistive switching and photovoltaic effects in TiO2/ZnO composite nanorods array at room temperature. J. Mater. Sci. Mater. Electron. 25(10), 4306–4311 (2014)

    Article  Google Scholar 

  14. T. Tan, D. Beydoun, R. Amal, Effects of organic hole scavengers on the photocatalytic reduction of selenium anions. J. Photoch. Photobio. A 159(3), 273–280 (2003)

    Article  Google Scholar 

  15. H. Wang, X. Yuan, Y. Wu, G. Zeng, X. Chen, L. Leng, Z. Wu, L. Jiang, H. Li, Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(VI) reduction. J. Hazard. Mater. 286, 187–194 (2015)

    Article  Google Scholar 

  16. M. Ibadurrohman, K. Hellgardt, Photoelectrochemical performance of graphene-modified TiO2 photoanodes in the presence of glycerol as a hole scavenger. Int. J. Hydrogen Energy 39(32), 18204–18215 (2014)

    Article  Google Scholar 

  17. J. Qi, K. Zhao, G. Li, Y. Gao, H. Zhao, R. Yu, Multi-shelled CeO2 hollow microspheres as superior photocatalysts for water oxidation. Nanoscale 6(8), 4072–4077 (2014)

    Article  Google Scholar 

  18. A. Tanaka, T. Deguchi, Simultaneous determination of cyanide and thiocyanate by the pyridine/barbituric acid method after diffusion through a microporous membrane. Anal. Chim. Acta 214, 259–269 (1988)

    Article  Google Scholar 

  19. T. Kang, Y. Park, J. Yi, Highly selective adsorption of Pt2+ and Pd2+ using thiol-functionalized mesoporous silica. Ind. Eng. Chem. Res. 43(6), 1478–1484 (2004)

    Article  Google Scholar 

  20. X. Wang, S.O. Pehkonen, A.K. Ray, Photocatalytic reduction of Hg(II) on two commercial TiO2 catalysts. Electrochim. Acta 49(9), 1435–1444 (2004)

    Article  Google Scholar 

  21. J.H. Choi, S.D. Kim, Y.J. Kwon, W.J. Kim, Adsorption behaviors of ETS-10 and its variant, ETAS-10 on the removal of heavy metals, Cu2+, Co2+, Mn2+ and Zn2+ from a waste water. Micropor. Mesopor. Mater. 96(1), 157–167 (2006)

    Article  Google Scholar 

  22. V. Padmavathy, P. Vasudevan, S.C. Dhingra, Biosorption of nickel (II) ions on Baker’s yeast. Process Biochem. 38(10), 1389–1395 (2003)

    Article  Google Scholar 

  23. G.C. Lukey, J. Van Deventer, S.T. Huntington, R.L. Chowdhury, D.C. Shallcross, Raman study on the speciation of copper cyanide complexes in highly saline solutions. Hydrometallurgy 53, 233–244 (1999)

    Article  Google Scholar 

  24. F. Chen, X. Zhao, H. Liu, J. Qu, Reaction of Cu (CN)3 2− with H2O2 in water under alkaline conditions: cyanide oxidation, Cu+/Cu2+ catalysis and H2O2 decomposition. Appl. Catal. B Environ. 158, 85–90 (2014)

    Article  Google Scholar 

  25. M.A. Barakat, Adsorption behavior of copper and cyanide ions at TiO2–solution interface. J. Colloid. Interf. Sci. 291(2), 345–352 (2005)

    Article  Google Scholar 

  26. S. Valencia, J. Marín, J. Velásquez, G. Restrepo, F.H. Frimmel, Study of pH effects on the evolution of properties of brown-water natural organic matter as revealed by size-exclusion chromatography during photocatalytic degradation. Water Res. 46(4), 1198–1206 (2012)

    Article  Google Scholar 

  27. V.K. Gupta, R. Jain, S. Agarwal, A. Nayak, M. Shvirastava, Photodegradation of hazardous dye quinoline yellow catalyzed by TiO2. J. Colloid. Interf. Sci. 366(1), 135–140 (2012)

    Article  Google Scholar 

  28. Y. Zhang, R. Selvaraj, M. Sillanpää, Y. Kim, C. Tai, The influence of operating parameters on heterogeneous photocatalytic mineralization of phenol over BiPO4. Chem. Eng. J. 245, 117–123 (2014)

    Article  Google Scholar 

  29. J.A. Pedraza-Avella, P. Acevedo-Pena, J.E. Pedraza-Rosas, Photocatalytic oxidation of cyanide on TiO2: an electrochemical approach. Cat. Today. 133, 611–618 (2008)

    Article  Google Scholar 

  30. Q. Zhang, C. Li, T. Li, Rapid photocatalytic decolorization of methylene blue using high photon flux UV/TiO2/H2O2 process. Chem. Eng. J. 217, 407–413 (2013)

    Article  Google Scholar 

  31. A. Achilleos, E. Hapeshi, N.P. Xekoukoulotakis, D. Mantazavinos, D. Fatta-Kassinos, Factors affecting diclofenac decomposition in water by UV–A/TiO2 photocatalysis. Chem. Eng. J. 161(1), 53–59 (2010)

    Article  Google Scholar 

  32. N.G. Asenjo, R. Santamaría, C. Blanco, M. Granda, P. Alvarez, R. Menéndez, Correct use of the Langmuir-Hinshelwood equation for proving the absence of a synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Carbon 55, 62–69 (2013)

    Article  Google Scholar 

  33. M.C. Yeber, C. Soto, R. Riveros, R, J. Navarrete, G. Vidai, Optimization by factorial design of copper (II) and toxicity removal using a photocatalytic process with TiO2 as semiconductor. Chem. Eng. J. 152(1), 14–19 (2009)

    Article  Google Scholar 

  34. L. Wang, L. Xu, Y. Wang, Z. Su, R. Liu, Photoelectrochemical enhancement of ternary nanocomposite electrode polyoxometalate/copper quantum dots/TiO2 with electrocatalytic performance of formic acid oxidation. Electrochim. Acta 155, 1–7 (2015)

    Article  Google Scholar 

  35. S. Zheng, W. Jiang, M. Rashid, Y. Cai, D.D. Dionysiou, K.E. O’Shea, Selective Reduction of Cr(VI) in Chromium, Copper and Arsenic (CCA) Mixed Waste Streams Using UV/TiO2 Photocatalysis. Molecules 20(2), 2622–2635 (2015)

    Article  Google Scholar 

  36. S. Endo, A. Pfennigsdorff, K.U. Goss, Salting-out effect in aqueous NaCl solutions: trends with size and polarity of solute molecules. Environ. Sci. Technol. 46(3), 1496–1503 (2012)

    Article  Google Scholar 

  37. C. Wang, Y.D. Lei, S. Endo, F. Wania, Measuring and Modeling the Salting-out Effect in Ammonium Sulfate Solutions. Environ. Sci. Technol. 48(22), 13238–13245 (2014)

    Article  Google Scholar 

  38. A.H. Boonstra, C. Mutsaers, Relation between the photoadsorption of oxygen and the number of hydroxyl groups on a titanium dioxide surface. J. Physic. Chem. 79(16), 1694–1698 (1975)

    Article  Google Scholar 

  39. P. Zheng, K. Zhang, Y. Dang, B. Bo, G. Weisheng, S. Yourui, Adsorption of Organic Dyes by TiO2@Yeast-Carbon Composite Microspheres and Their In Situ Regeneration Evaluation. J. Nanomater.(2014)

  40. A. Peter, E. Indrea, A. Mihaly-Cozmuta, L. Mihaly-Cozmuta, C. Nicula, H. Tutu, E. Bakatula (2012) Dual efficiency of nano-structured TiO2/zeolyte systems in removal of copper (II) and lead (II) ions from aqueous solution under visible light[C]. In: AIP Conference Proceedings-American Institute of Physics. 1425(1):139

  41. S.N. Frank, A.J. Bard, Semiconductor electrodes. 12. Photoassisted oxidations and photoelectrosynthesis at polycrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 99, 4667–4675 (1977)

    Article  Google Scholar 

  42. B.V. Mihaylov, J.L. Hendrix, J.H. Nelson, Comparative catalytic activity of selected metal oxides and sulfides for the photo-oxidation of cyanide. J. Photoch. Photobio. A. 72, 173–177 (1993)

    Article  Google Scholar 

  43. D. Mitoraj, R. Beránek, H. Kisch, Mechanism of aerobic visible light formic acid oxidation catalyzed by poly (tri-s-triazine) modified titania. Photoch. Photobio. Sci. 9(1), 31–38 (2010)

    Article  Google Scholar 

  44. W. Yajun, L.U. Kecheng, F. Changgen, Influence of inorganic anions and organic additives on photocatalytic degradation of methyl orange with supported polyoxometalates as photocatalyst. J. Rare Earth. 31(4), 360–365 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (No. 21176031), Fundamental Research Funds for the Central Universities (No. 2014G3292007) and Shanxi Provincial Natural Science Foundation of China (No. 2015JM2071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, P., Pan, Z., Li, H. et al. Effect of different type of scavengers on the photocatalytic removal of copper and cyanide in the presence of TiO2@yeast hybrids. J Mater Sci: Mater Electron 26, 6399–6410 (2015). https://doi.org/10.1007/s10854-015-3229-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3229-3

Keywords

Navigation