Skip to main content
Log in

Facile synthesis of GeO2 nanostructures and measurement of photocatalytic, photovoltaic and photoluminescence properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, germanium dioxide nanostructures were prepared by a facile co-precipitation method. In this synthesis approach was used from acetyl acetone as capping agent to get the smallest nanoparticles. Some of effective parameters were optimized to achieve the best morphology of product, such as mole ratio of acetyl acetone, temperature and time. Small germania nanostructures with a size about 70 nm sizes were achieved in this method. Nanostructures were characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared techniques X-ray energy dispersive spectroscopy and ultraviolet spectroscopy (UV–Vis). Various properties such as photoluminescence, photocatalytic and photovoltaic property were studied for as-prepared nanostructures. Results of germania nanostructures show that product revealed a PL band that caused from recombination of electron and hole in nanostructure. On the other hand, these nanostructures show a good photocatalytic behavior for degradation of methyl orange in presence of UV light. Therefore germania nanoparticles applied in photovoltaic measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Tracy, M. Davis, A.M. Snyder, M. Tsapatsis, Langmuir 23, 12469 (2007)

    Article  Google Scholar 

  2. S.N.A. Murad, P.T. Baine, D.W. McNeill, S.J.N. Mitchell, B.M. Armstrong, M. Modreanu, G. Hughes, R.K. Chellappan, Solid State Electron. 78, 136 (2012)

    Article  Google Scholar 

  3. R. Shi, R. Zhang, X. Chen, F. Yang, Q. Zhao, J. Yu, H. Zhao, L. Wang, B. Liu, L. Bao, Y. Chen, H. Yang, J. Cryst. Growth 336, 6 (2011)

    Article  Google Scholar 

  4. X.C. Wu, W.H. Song, B. Zhao, Y.P. Sun, J.J. Du, Chem. Phys. Lett. 349, 210 (2001)

    Article  Google Scholar 

  5. Q.J. Liu, Z.T. Liu, L.P. Feng, H. Tian, Solid State Sci. 12, 1748 (2010)

    Article  Google Scholar 

  6. L.Z. Pei, H.S. Zhao, W. Tan, Q.F. Zhang, J. Appl. Phys. 105, 54313 (2009)

    Article  Google Scholar 

  7. P. Hidalgo, B. Mendez, J. Piqueras, Nanotechnology 18, 155203 (2007)

    Article  Google Scholar 

  8. P. Hidalgo, B. Mendez, Nanotechnology 16, 2521 (2005)

    Article  Google Scholar 

  9. Y. Zhang, J. Zhu, Q. Zhang, Y. Yan, N. Wang, X. Zhang, Chem. Phys. Lett. 317, 504 (2000)

    Article  Google Scholar 

  10. C. Tang, X.X. Ding, Z.W. Gan, X.T. Huang, J.M. Gao, W. Liu, S.R. Qi, J. Cryst. Growth 242, 253 (2002)

    Article  Google Scholar 

  11. N. Bose, M. Basu, S. Mukherjee, Mater. Res. Bull. 47, 1368 (2012)

    Article  Google Scholar 

  12. W. Wu, X. Zou, Q. Li, B. Liu, B. Liu, R. Liu, D. Liu, Z. Li, W. Cui, Z. Liu, D. Li, T. Cui, G. Zou, J. Nanomater. (2011) Article ID 841701

  13. Y. Watanabe, J. Nishii, H. Moriwaki, G. Furuhashi, H. Hosono, H. Kawazoe, J. Non Cryst. Solids 239, 104 (1998)

    Article  Google Scholar 

  14. S. Gholamrezaei, M. Salavati-Niasari, D. Ghanbari, J. Ind. Eng. Chem. 20, 4000 (2014)

    Article  Google Scholar 

  15. O. Amiri, M. Salavati-Niasari, M. Sabet, D. Ghanbari, Mater. Sci. Semicond. Process 16, 1485 (2013)

    Article  Google Scholar 

  16. S. Gholamrezaei, M. Salavati-Niasari, H. Hadadzadeh, M.T. Behnamfar, K. Saberyan, Synth. React. Inorg. Met. Org. Nano Met. Chem. 45, 74 (2015)

    Article  Google Scholar 

  17. M. Peng, Y. Li, J. Gao, D. Zhang, Z. Jiang, X. Sun, J. Phys. Chem. C 115, 11420 (2011)

    Article  Google Scholar 

  18. H.R. Momenian, S. Gholamrezaei, M. Salavati-Niasari, B. Pedram, F. Mozaffar, D. Ghanbari, J. Cluster Sci. 24, 1031 (2013)

    Article  Google Scholar 

  19. M. Zacharias, P.M. Fauchet, Appl. Phys. Lett. 71, 380 (2009)

    Article  Google Scholar 

  20. M. Sahnoun, C. Daul, R. Khenata, H. Baltache, Eur. Phys. J. B 45, 455 (2005)

    Article  Google Scholar 

  21. S. Gholamrezaei, M. Salavati-Niasari, M. Bazarganipour, M. Panahi-Kalamuei, S. Bagheri, Adv. Powder Technol. 25, 1585 (2014)

    Article  Google Scholar 

  22. S.S. Shinde, P.S. Shinde, C.H. Bhosale, K.Y. Rajpure, J. Photochem. Photobiol. B 104, 425 (2011)

    Article  Google Scholar 

  23. M. Ardyanian, H. Rinnert, M. Vergnat, J. Lumin. 129, 729 (2009)

    Article  Google Scholar 

  24. S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Sol Energy Mater. Sol. Cells 77, 65 (2003)

    Article  Google Scholar 

  25. F. Fang, L. Kong, J. Huang, S. Wu, K. Zhang, X. Wang, B. Sun, Z. Jin, J. Wang, X.J. Huang, J. Liu, J. Hazard. Mater. 270, 1 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to council of university of Kashan for providing financial support to undertake this work by Grant No. (159271/231).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Salavati-Niasari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejaty-Moghadam, L., Esmaeili-Bafghi-Karimabad, A., Gholamrezaei, S. et al. Facile synthesis of GeO2 nanostructures and measurement of photocatalytic, photovoltaic and photoluminescence properties. J Mater Sci: Mater Electron 26, 6386–6394 (2015). https://doi.org/10.1007/s10854-015-3227-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3227-5

Keywords

Navigation