Skip to main content
Log in

Characterization of interface defects in BiFeO3 metal–oxide–semiconductor capacitors deposited by radio frequency magnetron sputtering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we study the structural and electrical properties of BiFeO3 MOS capacitors with a special focus on the oxide–semiconductor interface for gate dielectric applications. For this purpose BiFeO3 thin films with a thickness of 300 nm were deposited on p-type Si (100) substrates at 0 °C by RF sputtering. Half of the films were annealed at 550 °C for 30 min in atmospheric environment while the other half were kept as-deposited. XRD and SEM measurements were performed for both samples for structural characterization. MOS capacitors were fabricated by evaporation technique using Al from samples. For electrical characterizations of MOS capacitors, capacitance–voltage (C–V), conductance–frequency (Gp/ω–F) and leakage current density–voltage (J–V) measurements were performed. The XRD analyses show that BiFeO3 thin films are polycrystalline with some impurity phases, which influence the electronic device properties. The formation of crystallization is confirmed by SEM measurements. Debye length, barrier height and flat band voltages showed variations due to the frequency dependent charges, partially originating from interface defects, in the device structure. Therefore ignoring effects of frequency dependent charges can lead to significant errors in the analysis of electrical characteristics of MOS capacitors. Moreover, the obtained results from analyses of C–V, Gp/ω–F and J–V characteristics of annealed samples depict that all measured and calculated parameters are of the same order for novel MOS devices. Hence, the BiFeO3 dielectric layer in fabricated MOS devices exhibits a stable insulation property for gate dielectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  2. H. Bentarzi, Transport in Metal–Oxide–Semiconductor Structures (Springer, Berlin, 2011)

    Book  Google Scholar 

  3. V. Edon, M.C. Hugon, B. Agius, C. Cohen, C. Cardinaud, C. Eypert, Thin Solid Films 515, 7782–7789 (2007)

    Article  Google Scholar 

  4. P. Morgen, T. Jensen, C. Gundlach, L.B. Taekker, S.V. Hoffman, Z.S. Li, K. Pedersen, Phys. Scr. T101, 26–29 (2002)

    Article  Google Scholar 

  5. S.K. Nandi, S. Chakraborty, M.K. Bera, C.K. Maiti, Bull. Mater. Sci. 30, 247–254 (2007)

    Article  Google Scholar 

  6. W. Fan, J. Cao, J. Seidel, Y. Gu, J.W. Yim, C. Barrett, K.M. Yu, J. Ji, R. Ramesh, L.Q. Chen, J. Wu, Phys. Rev. B 83, 054506 (2011)

    Article  Google Scholar 

  7. C.H. Yang, D. Kan, I. Takeuchi, V. Nagarajan, J. Seidel, Phys. Chem. Chem. Phys. 14, 15953–15962 (2012)

    Article  Google Scholar 

  8. G. Catalan, J. Seidel, R. Ramesh, J.F. Scott, Rev. Mod. Phys. 84, 119–156 (2012)

    Article  Google Scholar 

  9. J. Seidel, J. Phys. Chem. Lett. 3, 2905–2909 (2012)

    Article  Google Scholar 

  10. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463–2485 (2009)

    Article  Google Scholar 

  11. S. Kamba, D. Nuzhnyy, M. Savinov, J. Sebek, J. Petzelt, J. Prokleska, R. Haumont, J. Kreisel, Phys. Rev. B 75, 024403 (2007)

    Article  Google Scholar 

  12. K.Y. Yun, M. Noda, M. Okuyama, H. Saeki, H. Tabata, K. Saito, J. Appl. Phys. 96, 3399–3403 (2004)

    Article  Google Scholar 

  13. D.J. Huang, H.M. Deng, P.X. Yang, J.H. Chu, Mater. Lett. 64, 2233–2235 (2010)

    Article  Google Scholar 

  14. B.C. Luo, C.L. Chen, K.X. Jin, Mater. Chem. Phys. 132, 364–367 (2012)

    Article  Google Scholar 

  15. H.W. Chang, F.T. Yuan, C.W. Shih, C.S. Ku, P.H. Chen, C.R. Wang, W.C. Chang, S.U. Jen, H.Y. Lee, Nanoscale Res. Lett. 7, 1–5 (2012)

    Article  Google Scholar 

  16. B.S. Soram, B.S. Ngangom, H.B. Sharma, Thin Solid Films 524, 57–61 (2012)

    Article  Google Scholar 

  17. P. Dash, B.N. Dash, H. Rath, C. Rath, N.C. Mishra, Indian J. Phys. 83, 485–491 (2009)

    Article  Google Scholar 

  18. M. Ohring, The Materials Science of Thin Films, 2nd edn. (Academic Press, New York, 1992)

    Google Scholar 

  19. S. Kaya, R. Lok, A. Aktag, J. Seidel, E. Yilmaz, J. Alloys Compd. 583, 476–480 (2014)

    Article  Google Scholar 

  20. H.P. Klug, B.E. Alexander, X-ray Diffraction Procedures (Wiley, New York, 1974)

    Google Scholar 

  21. M.C. Sekhar, P. Kondaiah, S.V.J. Chandra, G.M. Rao, S. Uthanna, Surf. Interface Anal. 44, 1299–1304 (2012)

    Article  Google Scholar 

  22. E.M.F. Vieira, R. Diaz, J. Grisolia, A. Parisini, J. Martin-Sanchez, S. Levichev, A.G. Rolo, A. Chahboun, M.J.M. Gomes, J. Phys. D Appl. Phys. 46, 095306 (2013)

    Article  Google Scholar 

  23. A. Tataroglu, S. Altindal, Microelectron. Eng. 85, 2256–2260 (2008)

    Article  Google Scholar 

  24. H. Xiao, S.H. Huang, Mater. Sci. Semicond. Process. 13, 395–399 (2010)

    Article  Google Scholar 

  25. L. Soliman, E. Duval, M. Benzohra, E. Lheurette, K. Ketata, M. Ketata, Mater. Sci Semicond. Process. 4, 163–166 (2001)

    Article  Google Scholar 

  26. N.M. Murari, R. Thomas, S.P. Pavunny, J.R. Calzada, R.S. Katiyar, Appl. Phys. Lett. 94, 142907 (2009)

    Article  Google Scholar 

  27. T. Ahmed, A. Vorobiev, S. Gevorgian, Thin Solid Films 520, 4470–4474 (2012)

    Article  Google Scholar 

  28. V. Singh, S.K. Sharma, D. Kumar, R.K. Nahar, Microelectron. Eng. 91, 137–143 (2012)

    Article  Google Scholar 

  29. H. Ke, W. Wang, Y. Wang, H. Zhang, D. Jia, Y. Zhou, X. Lu, P. Withers, J. Alloys Compd. 541, 94–98 (2012)

    Article  Google Scholar 

  30. L.H. Chong, K. Mallik, C.H. de Groot, R. Kersting, J. Phys. Condens. Matter 18, 645–657 (2006)

    Article  Google Scholar 

  31. S. Kaya, E. Yilmaz, Nuclear Instrum. Meth. B 319, 168–170 (2014)

    Article  Google Scholar 

  32. P.M. Tirmali, A.G. Khairnar, B.N. Joshi, A.M. Mahajan, Solid State Electron. 62, 44–47 (2011)

    Article  Google Scholar 

  33. E.H. Nicollian, J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 2003)

    Google Scholar 

  34. S. Altindal, A. Tataroglu, I. Dokme, Sol. Energy Mater. Sol. Cells 85, 345–358 (2005)

    Article  Google Scholar 

  35. P. Chattopadhyay, A.N. Daw, Solid State Electron. 29, 555–560 (1986)

    Article  Google Scholar 

  36. N. Konofaos, Microelectr. J. 35, 421–425 (2004)

    Article  Google Scholar 

  37. A.A. Dakhel, Thin Solid Films 496, 353–359 (2006)

    Article  Google Scholar 

  38. L. You, N.T. Chua, K. Yao, L. Chen, J.L. Wang, Phys. Rev. B 80, 024105 (2009)

    Article  Google Scholar 

  39. H. Bea, M. Bibes, A. Barthelemy, K. Bouzehouane, E. Jacquet, A. Khodan, J.P. Contour, S. Fusil, F. Wyczisk, A. Forget, D. Lebeugle, D. Colson, M. Viret, Appl. Phys. Lett. 87, 072508 (2005)

    Article  Google Scholar 

  40. V. Shelke, V.N. Harshan, S. Kotru, A. Gupta, J Appl Phys 106, 104114 (2009)

    Article  Google Scholar 

  41. Y. Shuai, S.Q. Zhou, S. Streit, H. Reuther, D. Burger, S. Slesazeck, T. Mikolajick, M. Helm, H. Schmidt, Appl. Phys. Lett. 98, 232901 (2011)

    Article  Google Scholar 

  42. X.Y. Zhang, Q. Song, F. Xu, C.K. Ong, Appl. Phys. Lett. 94, 022907 (2009)

    Article  Google Scholar 

  43. A. Srivastava, R.K. Nahar, C.K. Sarkar, J. Mater. Sci. Mater. Electron. 22, 882–889 (2011)

    Article  Google Scholar 

  44. Y.-H. Wu, M.-L. Wu, J.-R. Wu, Y.-S. Lin, Microelectron. Eng. 87, 2423–2428 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Middle East Technical University for providing experimental facilities and their generous support. This work is supported by Abant Izzet Baysal University under Contract Number: AIBU, BAP.2011.03.02.439, the Ministry of Development of Turkey under Contract Number: 2012K120360 and the Australian Research Council under Grant Numbers FT110100523, DP140100463 and DP140102849.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senol Kaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, S., Yilmaz, E., Aktag, A. et al. Characterization of interface defects in BiFeO3 metal–oxide–semiconductor capacitors deposited by radio frequency magnetron sputtering. J Mater Sci: Mater Electron 26, 5987–5993 (2015). https://doi.org/10.1007/s10854-015-3174-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3174-1

Keywords

Navigation