Skip to main content

Light weight high temperature polymer film capacitors with dielectric loss lower than polypropylene

Abstract

The dielectric and high voltage performance of polymethylpentene (PMP) is investigated and compared with biaxially-oriented polypropylene (BOPP) for high power density and high temperature capacitor applications. PMP has a melting temperature that is around 60 °C higher than BOPP, while still maintaining low dielectric loss and high charge–discharge efficiency that are comparable to the latter. Furthermore, PMP is the lightest commercial thermoplastic polymer with density of 0.83 g/cm3, which is 8 % lower than BOPP (0.9 g/cm3). PMP is a promising semicrystalline dielectric material that may replace BOPP for high temperature pulsed power and power conditioning applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    W.J. Sarjeant, J. Zirnheld, F.W. MacDougall, IEEE Trans. Plasma Sci. 26, 1368 (1998)

    Article  Google Scholar 

  2. 2.

    H.S. Nalwa (ed.), Handbook of Low and High Dielectric Constant Materials and Their Applications, vol. 2 (Academic Press, New York, 1999)

    Google Scholar 

  3. 3.

    S.A. Boggs, J. Ho, T.R. Jow, IEEE Electr. Insul. Mag. 26(2), 7 (2011)

    Article  Google Scholar 

  4. 4.

    C.W. Reed, S.W. Cichanowski, I.E.E.E. Trans, Dielectr. Electr. Insul. 1, 904 (1994)

    Article  Google Scholar 

  5. 5.

    M. Rabuffi, G. Picci, IEEE Trans. Plasma Sci. 30, 1939 (2002)

    Article  Google Scholar 

  6. 6.

    P. Michalczyk, I.E.E.E. Trans, Magnetics 39(1), 362 (2003)

    Article  Google Scholar 

  7. 7.

    T.A. Burress, C.L. Coomer, S.L. Campbell, A.A. Wereszczak, J.P. Cunningham, L.D. Marlino, L.E. Seiber, H.T. Lin, Oak Ridge National Laboratory Technical Report ORNL/TM-2008/185 (2008)

  8. 8.

    J. Hsu, R. Staunton, M. Starke, Barriers to the application of high-temperature coolants in hybrid electric vehicles, Oak Ridge National Laboratory Technical Report, ORNL/TM-2006/514 (2006)

  9. 9.

    K. Bennion, M. Thornton, Integrated vehicle thermal management for advanced vehicle propulsion technologies, in SAE 2010 World Congress, Detroit, Michigan, 13–15 Apr (2010)

  10. 10.

    J. Stricker, J. Scofield, N. Brar, J. DeCerbo, H. Kosai, T. Bixel, W. Lanter, B. Ray, in Proceeding of CARTS USA 2010, The 30th Symposium for Passive Components 15–18 Mar 2010, New Orleans, LA (pp. 441–456, 2010)

  11. 11.

    J. Ho, R. Jow, Characterization of high temperature polymer thin films for power conditioning capacitors, Army Research Laboratory report, ARL-TR-4880 (2009)

  12. 12.

    S. Qin, J. Ho, M. Rabuffi, G. Borelli, T.R. Jow, IEEE Electr. Insul. Mag. 27(1), 7 (2011)

    Article  Google Scholar 

  13. 13.

    M.P. Manoharan, C. Zou, E. Furman, N. Zhang, D.I. Kushner, S. Zhang, T. Murata, M.T. Lanagan, Energy Technol. 1, 313 (2013)

    Article  Google Scholar 

  14. 14.

    S. Zhang, C. Zou, D.I. Kushner, X. Zhou, R.J. Orchard Jr, N. Zhang, Q.M. Zhang, I.E.E.E. Trans, Diele. Electr. Insul. 19, 1158 (2012)

    Article  Google Scholar 

  15. 15.

    C. Zou, Q. Zhang, S. Zhang, D. Kushner, X. Zhou, R. Bernard, R.J. Orchard Jr, J. Vac. Sci. Technol. B 29(6), 061401 (2011)

    Article  Google Scholar 

  16. 16.

    C. Zou, D. Kushner, S. Zhang, Appl. Phys. Lett. 98, 082905 (2011)

    Article  Google Scholar 

  17. 17.

    N. Venkata, T.D. Dangb, Z. Baia, V.K. McNiera, J.N. DeCerboc, B.-H. Tsaoa, J.T. Stricker, Mater. Sci. Eng. B 168, 16 (2010)

    Article  Google Scholar 

  18. 18.

    J. Pan, K. Li, S. Chuayprakong, T. Hsu, Q. Wang, A.C.S. Appl, Mater. Interfaces 2, 1286 (2010)

    Article  Google Scholar 

  19. 19.

    L. Cheng, K. Han, K. Xu, M.R. Gadinskia, Q. Wang, Polym. Chem. 4, 2436 (2013)

    Article  Google Scholar 

  20. 20.

    J. Pan, K. Li, J. Li, T. Hsu, Q. Wang, Appl. Phys. Lett. 95, 022902 (2009)

    Article  Google Scholar 

  21. 21.

    S. Wu, W. Li, M. Lin, Q. Burlingame, Q. Chen, A. Payzant, K. Xiao, Q.M. Zhang, Adv. Mater. 25, 1734 (2013)

    Article  Google Scholar 

  22. 22.

    Q. Burlingame, S. Wu, M. Lin, Q.M. Zhang, Adv. Energy Mater. (2013). doi:10.1002/aenm.201201110

    Google Scholar 

  23. 23.

    S. Chen, J. Jin, J. Zhang, J. Therm. Anal. Calorim. 103, 229 (2011)

    Article  Google Scholar 

  24. 24.

    C. De Rosa, Macromolecules 36, 6087 (2003)

    Article  Google Scholar 

  25. 25.

    S. Adams, F. MacDougall, R. Ellwanger, A. Yializis, in 1st International Energy Conversion Engineering Conference, 17–21 Aug 2003, Portsmouth, Virginia (2003)

  26. 26.

    G.F. Lee, T. Hiltz, J. Appl. Polym. Sci. 29, 3057 (1984)

    Article  Google Scholar 

  27. 27.

    T. Christen, M.W. Carlen, J. Power Sources 91, 210 (2000)

    Article  Google Scholar 

  28. 28.

    X. Jin, S. Zhang, J. Runt, Polymer 43, 6247 (2002)

    Article  Google Scholar 

  29. 29.

    A. Jonas, R. Legra, Macromolecules 26, 81 (1993)

    Google Scholar 

  30. 30.

    P. Hu, P. Cebe, J. Polym. Sci., Part B Polym. Phys. 30, 239 (1992)

    Article  Google Scholar 

  31. 31.

    S.X. Lu, P. Cebe, J. Appl. Polym. Sci. 61, 473 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. Office of Naval Research under contract number N00014-13C0234.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Janet Ho or Shihai Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Ho, J., Runt, J. et al. Light weight high temperature polymer film capacitors with dielectric loss lower than polypropylene. J Mater Sci: Mater Electron 26, 9396–9401 (2015). https://doi.org/10.1007/s10854-015-3152-7

Download citation

Keywords

  • Dielectric Loss
  • Semicrystalline Polymer
  • Power Conditioning
  • Equivalent Series Resistance
  • High Dielectric Loss