Advertisement

Light weight high temperature polymer film capacitors with dielectric loss lower than polypropylene

  • Nanyan Zhang
  • Janet HoEmail author
  • James Runt
  • Shihai ZhangEmail author
Article

Abstract

The dielectric and high voltage performance of polymethylpentene (PMP) is investigated and compared with biaxially-oriented polypropylene (BOPP) for high power density and high temperature capacitor applications. PMP has a melting temperature that is around 60 °C higher than BOPP, while still maintaining low dielectric loss and high charge–discharge efficiency that are comparable to the latter. Furthermore, PMP is the lightest commercial thermoplastic polymer with density of 0.83 g/cm3, which is 8 % lower than BOPP (0.9 g/cm3). PMP is a promising semicrystalline dielectric material that may replace BOPP for high temperature pulsed power and power conditioning applications.

Keywords

Dielectric Loss Semicrystalline Polymer Power Conditioning Equivalent Series Resistance High Dielectric Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the U.S. Office of Naval Research under contract number N00014-13C0234.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    W.J. Sarjeant, J. Zirnheld, F.W. MacDougall, IEEE Trans. Plasma Sci. 26, 1368 (1998)CrossRefGoogle Scholar
  2. 2.
    H.S. Nalwa (ed.), Handbook of Low and High Dielectric Constant Materials and Their Applications, vol. 2 (Academic Press, New York, 1999)Google Scholar
  3. 3.
    S.A. Boggs, J. Ho, T.R. Jow, IEEE Electr. Insul. Mag. 26(2), 7 (2011)CrossRefGoogle Scholar
  4. 4.
    C.W. Reed, S.W. Cichanowski, I.E.E.E. Trans, Dielectr. Electr. Insul. 1, 904 (1994)CrossRefGoogle Scholar
  5. 5.
    M. Rabuffi, G. Picci, IEEE Trans. Plasma Sci. 30, 1939 (2002)CrossRefGoogle Scholar
  6. 6.
    P. Michalczyk, I.E.E.E. Trans, Magnetics 39(1), 362 (2003)CrossRefGoogle Scholar
  7. 7.
    T.A. Burress, C.L. Coomer, S.L. Campbell, A.A. Wereszczak, J.P. Cunningham, L.D. Marlino, L.E. Seiber, H.T. Lin, Oak Ridge National Laboratory Technical Report ORNL/TM-2008/185 (2008)Google Scholar
  8. 8.
    J. Hsu, R. Staunton, M. Starke, Barriers to the application of high-temperature coolants in hybrid electric vehicles, Oak Ridge National Laboratory Technical Report, ORNL/TM-2006/514 (2006)Google Scholar
  9. 9.
    K. Bennion, M. Thornton, Integrated vehicle thermal management for advanced vehicle propulsion technologies, in SAE 2010 World Congress, Detroit, Michigan, 13–15 Apr (2010)Google Scholar
  10. 10.
    J. Stricker, J. Scofield, N. Brar, J. DeCerbo, H. Kosai, T. Bixel, W. Lanter, B. Ray, in Proceeding of CARTS USA 2010, The 30th Symposium for Passive Components 15–18 Mar 2010, New Orleans, LA (pp. 441–456, 2010)Google Scholar
  11. 11.
    J. Ho, R. Jow, Characterization of high temperature polymer thin films for power conditioning capacitors, Army Research Laboratory report, ARL-TR-4880 (2009)Google Scholar
  12. 12.
    S. Qin, J. Ho, M. Rabuffi, G. Borelli, T.R. Jow, IEEE Electr. Insul. Mag. 27(1), 7 (2011)CrossRefGoogle Scholar
  13. 13.
    M.P. Manoharan, C. Zou, E. Furman, N. Zhang, D.I. Kushner, S. Zhang, T. Murata, M.T. Lanagan, Energy Technol. 1, 313 (2013)CrossRefGoogle Scholar
  14. 14.
    S. Zhang, C. Zou, D.I. Kushner, X. Zhou, R.J. Orchard Jr, N. Zhang, Q.M. Zhang, I.E.E.E. Trans, Diele. Electr. Insul. 19, 1158 (2012)CrossRefGoogle Scholar
  15. 15.
    C. Zou, Q. Zhang, S. Zhang, D. Kushner, X. Zhou, R. Bernard, R.J. Orchard Jr, J. Vac. Sci. Technol. B 29(6), 061401 (2011)CrossRefGoogle Scholar
  16. 16.
    C. Zou, D. Kushner, S. Zhang, Appl. Phys. Lett. 98, 082905 (2011)CrossRefGoogle Scholar
  17. 17.
    N. Venkata, T.D. Dangb, Z. Baia, V.K. McNiera, J.N. DeCerboc, B.-H. Tsaoa, J.T. Stricker, Mater. Sci. Eng. B 168, 16 (2010)CrossRefGoogle Scholar
  18. 18.
    J. Pan, K. Li, S. Chuayprakong, T. Hsu, Q. Wang, A.C.S. Appl, Mater. Interfaces 2, 1286 (2010)CrossRefGoogle Scholar
  19. 19.
    L. Cheng, K. Han, K. Xu, M.R. Gadinskia, Q. Wang, Polym. Chem. 4, 2436 (2013)CrossRefGoogle Scholar
  20. 20.
    J. Pan, K. Li, J. Li, T. Hsu, Q. Wang, Appl. Phys. Lett. 95, 022902 (2009)CrossRefGoogle Scholar
  21. 21.
    S. Wu, W. Li, M. Lin, Q. Burlingame, Q. Chen, A. Payzant, K. Xiao, Q.M. Zhang, Adv. Mater. 25, 1734 (2013)CrossRefGoogle Scholar
  22. 22.
    Q. Burlingame, S. Wu, M. Lin, Q.M. Zhang, Adv. Energy Mater. (2013). doi: 10.1002/aenm.201201110 Google Scholar
  23. 23.
    S. Chen, J. Jin, J. Zhang, J. Therm. Anal. Calorim. 103, 229 (2011)CrossRefGoogle Scholar
  24. 24.
    C. De Rosa, Macromolecules 36, 6087 (2003)CrossRefGoogle Scholar
  25. 25.
    S. Adams, F. MacDougall, R. Ellwanger, A. Yializis, in 1st International Energy Conversion Engineering Conference, 17–21 Aug 2003, Portsmouth, Virginia (2003)Google Scholar
  26. 26.
    G.F. Lee, T. Hiltz, J. Appl. Polym. Sci. 29, 3057 (1984)CrossRefGoogle Scholar
  27. 27.
    T. Christen, M.W. Carlen, J. Power Sources 91, 210 (2000)CrossRefGoogle Scholar
  28. 28.
    X. Jin, S. Zhang, J. Runt, Polymer 43, 6247 (2002)CrossRefGoogle Scholar
  29. 29.
    A. Jonas, R. Legra, Macromolecules 26, 81 (1993)Google Scholar
  30. 30.
    P. Hu, P. Cebe, J. Polym. Sci., Part B Polym. Phys. 30, 239 (1992)CrossRefGoogle Scholar
  31. 31.
    S.X. Lu, P. Cebe, J. Appl. Polym. Sci. 61, 473 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.PolyK Technologies, LLCState CollegeUSA
  2. 2.US Army Research LaboratoryAdelphiUSA
  3. 3.Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations