Skip to main content
Log in

The effect of temperature on Bi2Se3 nanostructures synthesized via chemical vapor deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bismuth selenide (Bi2Se3) nanostructures have been synthesized via chemical vapor deposition at different temperatures. In order to reduce the Se vacancy in Bi2Se3, the ultrapure Bi2Se3 mixed with the Se powder source is used to supply a sufficient selenium atmosphere. The crystallization, composition, morphology of the products effected by temperature were characterized by XRD, SEM, EDX, HRTEM, SAED and Raman. The results show that the nanostructures of Bi2Se3 deposited at 500 °C is optimized in our experimental conditions. Meanwhile, it provided an evidence to synthesize Bi2Se3 nanostructures, which is more advantageous to investigate the exotic surface states and potential applications in spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, S.-C. Zhang, Nat. Phys. 5, 438 (2009)

    Article  Google Scholar 

  2. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan, Nat. Phys. 5, 398 (2009)

    Article  Google Scholar 

  3. Y.L. Chen, J.G. Analytis, J.-H. Chu, Z.K. Liu, S.-K. Mo, X.L. Qi, H.J. Zhang, D.H. Lu, X. Dai, Z. Fang, S.C. Zhang, I.R. Fisher, Z. Hussain, Z.-X. Shen, Science 325, 178 (2009)

    Article  Google Scholar 

  4. X.L. Qi, S.C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)

    Article  Google Scholar 

  5. H.M. Xu, G. Chen, R.C. Jin, D.H. Chen, J. Pei, Y. Wang, CrystEngComm 15, 5626 (2013)

    Article  Google Scholar 

  6. H.M. Xu, G. Chen, R.C. Jin, J. Pei, Y. Wang, D.H. Chen, CrystEngComm 15, 1618 (2013)

    Article  Google Scholar 

  7. C. Yang, H.B. Zhao, Y.L. Hou, D. Ma, J. Am. Chem. Soc. 134, 15814 (2012)

    Article  Google Scholar 

  8. J.J. Wu, J.H. Zhu, M.G. Zhou, Y.L. Hou, S. Gao, CrystEngComm 14, 7572 (2012)

    Article  Google Scholar 

  9. H.B. Liao, Y.L. Hou, Chem. Mater. 25, 457 (2013)

    Article  Google Scholar 

  10. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  Google Scholar 

  11. H. Li, H.L. Peng, W.H. Dang, L.L. Yu, Z.F. Liu, Front. Phys. 7, 208 (2012)

    Article  Google Scholar 

  12. Z. Ali, C.B. Cao, J.L. Li, Y.L. Wang, T. Cao, M. Tanveer, M. Tahir, F. Idrees, F.K. Butt, J. Power Sources 229, 216 (2013)

    Article  Google Scholar 

  13. L. Gao, W. Huang, J.D. Zhang, T. Zhu, H. Zhang, C.J. Zhao, W. Zhang, H. Zhang, Appl. Optics 53, 5117 (2014)

    Article  Google Scholar 

  14. H.L. Peng, K.J. Lai, D.S. Kong, S. Meister, Y.L. Chen, X.-L. Qi, S.C. Zhang, Z.-X. Shen, Y. Cui, Nat. Mater. 9, 225 (2010)

    Google Scholar 

  15. D.S. Kong, J.C. Randel, H.L. Peng, J.J. Cha, S. Meister, K.J. Lai, Y.L. Chen, Z.-X. Shen, H.C. Manoharan, Y. Cui, Nano Lett. 10, 329 (2010)

    Article  Google Scholar 

  16. H. Tang, D. Liang, R.L.J. Qiu, X.P.A. Gao, ACS Nano 5, 7510 (2011)

    Article  Google Scholar 

  17. F.X. Xiu, L. He, Y. Wang, L.N. Cheng, L.-T. Chang, M.R. Lang, G. Huang, X.F. Kou, Y. Zhou, X.W. Jiang, Z.G. Chen, J. Zou, A. Shailos, K.L. Wang, Nat. Nanotech. 6, 216 (2011)

    Article  Google Scholar 

  18. J.G. Checkelsky, Y.S. Hor, M.-H. Liu, D.-X. Qu, R.J. Cava, N.P. Ong, Phys. Rev. Lett. 103, 246601 (2009)

    Article  Google Scholar 

  19. S.S. Hong, W. Kundhikanjana, J.J. Cha, K.J. Lai, D.S. Kong, S. Meister, M.A. Kelly, Z.-X. Shen, Y. Cui, Nano Lett. 10, 3118 (2010)

    Article  Google Scholar 

  20. D. Hsieh, Y. Xia, D. Qian, L. Wray, J.H. Dil, F. Meier, J. Osterwalder, L. Patthey, J.G. Checkelsky, N.P. Ong, A.V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan, Nature 460, 1101 (2009)

    Article  Google Scholar 

  21. M.X. Wang, C.H. Liu, J.P. Xu, F. Yang, L. Miao, M.Y. Yao, C.L. Gao, C.Y. Shen, X.C. Ma, X. Chen, Z.A. Xu, Y. Liu, S.C. Zhang, D. Qian, J.F. Jia, Q.K. Xue, Science 336, 52 (2012)

    Article  Google Scholar 

  22. J.H. Jeon, W.J. Jang, J.K. Yoon, S.J. Kahng, Nanotechnology 22, 465602 (2011)

    Article  Google Scholar 

  23. G.H. Zhang, H.J. Qin, J. Chen, X.Y. He, L. Lu, Y.Q. Li, K.H. Wu, Adv. Funct. Mater. 21, 2351 (2011)

    Article  Google Scholar 

  24. Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, Q.-K. Xue, Nat. Phys. 6, 584 (2010)

    Article  Google Scholar 

  25. H.M. Cui, H. Liu, J.Y. Wang, X. Li, F. Han, R.I. Boughton, J. Cryst. Growth 271, 456 (2004)

    Article  Google Scholar 

  26. D.B. Wang, D.B. Yu, M.S. Mo, X.M. Liu, Y.T. Qian, J. Cryst. Growth 253, 445 (2003)

    Article  Google Scholar 

  27. G.Q. Zhang, W. Wang, X.L. Lu, X.G. Li, Cryst. Growth Des. 9, 145 (2009)

    Article  Google Scholar 

  28. Y.-F. Lin, H.-W. Chang, S.-Y. Lu, C.W. Liu, J. Phys. Chem. C 111, 18538 (2007)

    Article  Google Scholar 

  29. W.H. Dang, H.L. Peng, H. Li, P. Wang, Z.F. Liu, Nano Lett. 10, 2870 (2010)

    Article  Google Scholar 

  30. H. Li, J. Cao, W.S. Zheng, Y.L. Chen, D. Wu, W.H. Dang, K. Wang, H.L. Peng, Z.F. Liu, J. Am. Chem. 134, 6132 (2012)

    Article  Google Scholar 

  31. J. Linder, T. Yokoyama, A. Sudb, Phys. Rev. B 80, 205401 (2009)

    Article  Google Scholar 

  32. H.-Z. Lu, W.-Y. Shan, W. Yao, Q. Niu, S.-Q. Shen, Phys. Rev. B 81, 115407 (2010)

    Article  Google Scholar 

  33. R.W.G. Wyckoff, Crystal Structures, 2nd edn. (Interscience Publishers, New York, 1963), pp. 85–237

    Google Scholar 

  34. D.S. Kong, J.J. Cha, K.J. Lai, H.L. Peng, J.G. Analytis, S. Meister, Y.L. Chen, H.-J. Zhang, I.R. Fisher, Z.-X. Shen, Y. Cui, ACS Nano 5, 4698 (2011)

    Article  Google Scholar 

  35. Y. Yan, Z.-M. Liao, Y.-B. Zhou, H.-C. Wu, Y.-Q. Bie, J.-J. Chen, J. Meng, X.-S. Wu, D.-P. Yu, Sci. Rep. 3, 1264 (2013)

    Google Scholar 

  36. W. Richter, C.R. Becker, Phys. Status Solidi 84, 619 (1977)

    Article  Google Scholar 

  37. J. Zhang, Z.P. Peng, A. Soni, Y.Y. Zhao, Y. Xiong, B. Peng, J.B. Wang, M.S. Dresselhaus, Q.H. Xiong, Nano Lett. 11, 2407 (2011)

    Article  Google Scholar 

  38. G.H. Zhang, H.J. Qin, J. Teng, J.D. Guo, Q.L. Guo, X. Dai, Z. Fang, K.H. Wu, Appl. Phys. Lett. 95, 053114 (2009)

    Article  Google Scholar 

  39. V. Gnezdilov, YuG. Pashkevich, H. Berger, E. Pomjakushina, K. Conder, P. Lemmens, Phys. Rev. B 84, 195118 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61307120, 11474187, 11274204 and 11304186), the Project of Shandong Province Outstanding Young Scientists Research Award Fund (BS2013CL011), the Project of Shandong Province Higher Educational Science and Technology Program (J12LA07) and Graduate Innovation Fund (BCX1405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aihua Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Liu, M., Liu, A. et al. The effect of temperature on Bi2Se3 nanostructures synthesized via chemical vapor deposition. J Mater Sci: Mater Electron 26, 3881–3886 (2015). https://doi.org/10.1007/s10854-015-2915-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2915-5

Keywords

Navigation