Skip to main content
Log in

Signature of antiferromagnetism in entropy maximized charge density distribution of melt grown diluted magnetic semiconductor Ge1−xVx

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Diluted magnetic semiconductor Ge1−xVx with three different dopant concentrations x = 0.03, 0.06 and 0.09 has been grown using melt growth technique. Scanning electron microscopy was used to analyze the surface morphological nature of the samples. Magnetic measurements taken using vibrating sample magnetometer reveal the diamagnetic nature for x = 0.03 and antiferromagnetic for x = 0.06 and 0.09. Powder X-ray diffraction data sets were collected for the samples and the structure was analysed using profile refinement technique and charge density was analysed using the versatile statistical tool maximum entropy method. Charge density analysis reveals that when x = 0.06 and 0.09 the system exhibits covalent bonding and picturises the signature of antiferromagnetism. The local structure was analyzed using pair distribution function technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z. Wilamowski, A.M. Werpachowska, Mater. Sci. Poland 24, 3 (2006)

    Google Scholar 

  2. H. Munekata, H. Ohno, S. von Molnar, A. Segmuller, L.L. Chang, L. Esaki, Phys. Rev. Lett. 63, 1849 (1989)

    Article  Google Scholar 

  3. H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, Y. Iye, Appl. Phys. Lett. 69, 363 (1996)

    Article  Google Scholar 

  4. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    Article  Google Scholar 

  5. Y.D. Park, A.T. Hanbicki, S.C. Erwin, C.S. Hellberg, J.M. Sullivan, J.E. Mattson, T.F. Ambrose, A. Wilson, G. Spanos, B.T. Jonker, Science 295, 651 (2002)

    Article  Google Scholar 

  6. M.A. Borek, S. Oktyabrsky, M.O. Aboelfotoh, J. Narayan, Appl. Phys. Lett. 69, 3560 (1996)

    Article  Google Scholar 

  7. S. Choi, H.C. Hong, S. Cho, Y. Kim, J.B. Ketterson, C.U. Jung, K. Rhie, B.J. Kim, Y.C. Kim, J. Appl. Phys. 93, 7670 (2003)

    Article  Google Scholar 

  8. M.M. Otrokov, V.V. Tugushev, A. Ernst, S.A. Ostanin, V.M. Kuznetsov, E.V. Chulkov, J. Exp. Theor. Phys. 112(4), 625 (2011)

    Article  Google Scholar 

  9. X.H. Zhou, X.S. Chen, X.G. Guo, L.Z. Sun, Y.L. Sun, W. Lu, J. Mag, Mag. Mater. 284, 253 (2004)

    Article  Google Scholar 

  10. A.W. Overhauser, J. Phys. Chem. Solids 13, 71 (1960)

    Article  Google Scholar 

  11. E.W. Hart, Phys. Rev. 106, 467 (1957)

    Article  Google Scholar 

  12. K. Yosida, Phys. Rev. 106, 893 (1957)

    Article  Google Scholar 

  13. S. Saravanakumar, M. Pattammal, S. Israel, R.A.J.R. Sheeba, R. Saravanan, Phys. B 407, 302 (2012)

    Article  Google Scholar 

  14. H.M. Rietveld, J. Appl. Cryst. 2, 65 (1969)

    Article  Google Scholar 

  15. V. Petříček, M. Dušek, L. Palatinus, The Crystallographic Computing System (Institute of Physics, Academy of Sciences of the Czech Republic, Praha, 2000)

    Google Scholar 

  16. D.M. Collins, Nature 49, 298 (1982)

    Google Scholar 

  17. K.S. Syed Ali, R. Saravanan, S. Israel, M. Açıkgöz, L. Arda, Phys. B 405, 1763 (2010)

    Article  Google Scholar 

  18. D. Ruben, I. Fujio: Super-fast program PRIMA for the maximum-entropy method, Advanced materials Laboratory, National Institute for Materials Science, Ibaraki, Japan 3050044 (2004)

  19. F. Izumi, R.A. Dilanian, Recent Research Developments in Physics, Part II, 3, Transworld (Research Network, Trivandrum, 2002), pp. 699–726

    Google Scholar 

  20. K. Momma, F. Izumi, J. Appl. Crystallogr. 41, 653 (2008)

    Article  Google Scholar 

  21. http://en.wikipedia.org/wiki/Barkhausen_effect

  22. T. Proffen, S.J.L. Billinge, J. Appl. Crystallogr. 32, 572 (1999)

    Article  Google Scholar 

  23. K. Jeong, J. Thompson, T. Proffen, A. Perez, S.J.L. Billinge, PDFGetX, a program for obtaining the atomic pair distribution function from X-ray powder diffraction data (2001)

  24. C.L. Farrow, P. Juhas, J.W. Liu, D. Bryndin, E.S. Bozin, J. Bloch, T. Proffen, S.J.L. Billinge, J. Phys. Condens. Matter. Phys. 19, 335219 (2007)

    Article  Google Scholar 

  25. J.L.B. Bochu: GRETEP, Domaine universitaire BP 46, 38402 Saint Martin d’Hères. http:www.inpg.fr/LMGP

Download references

Acknowledgments

We thank the Council of Scientific and Industrial Research (CSIR) for its financial assistance to the research Project No. 03(1138)/09/EMR-II. We thank the authorities of The Madura College, Madurai, for their support. We acknowledge National Institute for Interdisciplinary Science & Technology (NIIST), Trivandrum, for their help in the collection of X-ray diffraction data. We acknowledge Central Instrumentation Facility, Pondicherry University, Pondicherry, for their help in the magnetic measurements using VSM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. J. R. Sheeba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheeba, R.A.J.R., Saravanan, R. & Berchmans, L.J. Signature of antiferromagnetism in entropy maximized charge density distribution of melt grown diluted magnetic semiconductor Ge1−xVx . J Mater Sci: Mater Electron 26, 3772–3780 (2015). https://doi.org/10.1007/s10854-015-2901-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2901-y

Keywords

Navigation