Green synthesis of multi-shaped silver nanoparticles: optical, morphological and antibacterial properties

  • Suman SinghEmail author
  • Amardeep Bharti
  • Vijay Kumar Meena


The manuscript deals with the green synthesis of anisotropic silver nanoparticles (AgNPs). For synthesis, the maltose has been used as reducing and polyvinyl pyrrolidone (PVP) as capping agent and the reaction has been initiated using microwave heating. A strong SPR band at 427 nm and a tail around 590 nm in UV–Vis spectrum of AgNPs, and TEM imaging confirmed the synthesis of anisotropic nanoparticles (NPs). Microwave irradiation time, silver precursor concentration and capping agent concentration affected the particle size as well as particle size distribution. Antibacterial behaviour of anisotropic AgNPs was better than their spherical counterparts.


Silver Nanoparticles Maltose Green Synthesis Screen Print Electrode AgNO3 Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors acknowledge the financial support received from Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the network project ‘BIOCERAM’, Project No. ESC-0103.


  1. 1.
    S. Singh, D.V.S. Jain, M.L. Singla, Sol-gel based composite of gold nanoparticles as matix for tyrosinase for amperometric catechol biosensor. Sensors Actuators B: Chem. 182, 161–169 (2013). doi: 10.1016/j.snb.2013.02.111 CrossRefGoogle Scholar
  2. 2.
    Z.-Y. Zhou, N. Tian, J.-T. Li, I. Broadwell, S.-G. Sun, Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem. Soc. Rev. 40(7), 4167–4185 (2011). doi: 10.1039/C0CS00176G CrossRefGoogle Scholar
  3. 3.
    R. Yu, Q. Lin, S.-F. Leung, Z. Fan, Nanomaterials and nanostructures for efficient light absorption and photovoltaics. Nano Energy 1(1), 57–72 (2012). doi: 10.1016/j.nanoen.2011.10.002 CrossRefGoogle Scholar
  4. 4.
    S. Singh, D.V.S. Jain, M.L. Singla, One step electrochemical synthesis of gold-nanoparticles-polypyrrole composite for application in catechin electrochemical biosensor. Anal. Methods 5(4), 1024–1032 (2013). doi: 10.1039/C2AY26201K CrossRefGoogle Scholar
  5. 5.
    P.D. Suman Singh, D. Singh, D.V.S. Jain, M.L. Singla, Sensing behavior of silica-coated Au nanoparticles towards nitrobenzene. Gold Bull. 45, 75–81 (2012)CrossRefGoogle Scholar
  6. 6.
    C.O. Kappe, Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. 43(46), 6250–6284 (2004). doi: 10.1002/anie.200400655 CrossRefGoogle Scholar
  7. 7.
    C. Li, Y. Wei, A. Liivat, Y. Zhu, J. Zhu, Microwave-solvothermal synthesis of Fe3O4 magnetic nanoparticles. Mater. Lett. 107, 23–26 (2013). doi: 10.1016/j.matlet.2013.05.117 CrossRefGoogle Scholar
  8. 8.
    P.B. Gaston, G. Morales, M.L.L. Quintanilla, Microwave assisted synthesis of ZnO nanoparticles: effect of precursor reagents, temperature, irradiation time, and additives on nano-ZnO morphology development. J Mater. 2013, 11 (2013). doi: 10.1155/2013/478681 Google Scholar
  9. 9.
    M.I. Dar, A.K. Chandiran, M. Gratzel, M.K. Nazeeruddin, S.A. Shivashankar, Controlled synthesis of TiO2 nanoparticles and nanospheres using a microwave assisted approach for their application in dye-sensitized solar cells. J. Mater. Chem. A 2(6), 1662–1667 (2014). doi: 10.1039/C3TA14130F CrossRefGoogle Scholar
  10. 10.
    G.A. Kahrilas, L.M. Wally, S.J. Fredrick, M. Hiskey, A.L. Prieto, J.E. Owens, Microwave-assisted green synthesis of silver nanoparticles using orange peel extract. ACS Sustain. Chem. Eng. 2(3), 367–376 (2013). doi: 10.1021/sc4003664 CrossRefGoogle Scholar
  11. 11.
    M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa, T. Tsuji, Microwave-assisted synthesis of metallic nanostructures in solution. Chem. Eur. J. 11(2), 440–452 (2005). doi: 10.1002/chem.200400417 CrossRefGoogle Scholar
  12. 12.
    S.M. Kazemzadeh, A. Hassanjani-Roshan, M.R. Vaezi, A. Shokuhfar, The effect of microwave irradiation time on appearance properties of silver nanoparticles. Trans. Indian Inst. Metals 64(3), 261–264 (2011). doi: 10.1007/s12666-011-0053-1 CrossRefGoogle Scholar
  13. 13.
    A. Panáček, L. Kvítek, R. Prucek, M. Kolář, R. Večeřová, N. Pizúrová, V.K. Sharma, T.J. Nevěčná, R. Zbořil, Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B 110(33), 16248–16253 (2006). doi: 10.1021/jp063826h CrossRefGoogle Scholar
  14. 14.
    V.K. Sharma, R.A. Yngard, Y. Lin, Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 145(1–2), 83–96 (2009). doi: 10.1016/j.cis.2008.09.002 CrossRefGoogle Scholar
  15. 15.
    S. Rezaei-Zarchi, S. Imani, A. Mohammad Zand, M. Saadati, Z. Zaghari, Study of bactericidal properties of carbohydrate-stabilized platinum oxide nanoparticles. Int. Nano Lett. 2(1), 1–5 (2012). doi: 10.1186/2228-5326-2-21 CrossRefGoogle Scholar
  16. 16.
    M.A. Garza-Navarro, J.A. Aguirre-Rosales, E.E. Llanas-Vazquez, I.E. Moreno-Cortez, A. Torres-Castro, V. Gonzalez-Gonalez, Totally ecofriendly synthesis of silver nanoparticles from aqueous dissolutions of polysaccharides. Int. J. Polym. Sci. (2013). doi: 10.1155/2013/436021 Google Scholar
  17. 17.
    T. Mochochoko, O.S. Oluwafemi, D.N. Jumbam, S.P. Songca, Green synthesis of silver nanoparticles using cellulose extracted from an aquatic weed; water hyacinth. Carbohydr. Polym. 98(1), 290–294 (2013). doi: 10.1016/j.carbpol.2013.05.038 CrossRefGoogle Scholar
  18. 18.
    P. Raveendran, J. Fu, S.L. Wallen, Completely “green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 125(46), 13940–13941 (2003). doi: 10.1021/ja029267j CrossRefGoogle Scholar
  19. 19.
    B. Ajitha, Y.A.K. Reddy, P.S. Reddy, Biosynthesis of silver nanoparticles using Plectranthus amboinicus leaf extract and its antimicrobial activity. Spectrochim. Acta Part A. Mol. Biomol. Spectrosc. 128, 257–262 (2014). doi: 10.1016/j.saa.2014.02.105 CrossRefGoogle Scholar
  20. 20.
    A.A. Kajani, A.-K. Bordbar, S.H. Zarkesh Khosropour, A.R. Esfahani, A. Razmjou, Green synthesis of anisotropic silver nanoparticles with potent anticancer activity using Taxus baccata extract. RSC Adv. 4(106), 61394–61403 (2014). doi: 10.1039/C4RA08758E CrossRefGoogle Scholar
  21. 21.
    S. Singh, A. Bharti, V. Meena, Structural, thermal, zeta potential and electrical properties of disaccharide reduced silver nanoparticles. J. Mater. Sci.: Mater. Electron. 25(9), 3747–3752 (2014). doi: 10.1007/s10854-014-2085-x Google Scholar
  22. 22.
    N.N. Mallikarjuna, R.S. Varma, Microwave-assisted shape-controlled bulk synthesis of noble nanocrystals and their catalytic properties. Cryst. Growth Des. 7(4), 686–690 (2007). doi: 10.1021/cg060506e CrossRefGoogle Scholar
  23. 23.
    K.J. Sreeram, M. Nidhin, B.U. Nair, Microwave assisted template synthesis of silver nanoparticles. Bull. Mater. Sci. 31(7), 937–942 (2008). doi: 10.1007/s12034-008-0149-3 CrossRefGoogle Scholar
  24. 24.
    H. Peng, A. Yang, J. Xiong, Green, microwave-assisted synthesis of silver nanoparticles using bamboo hemicelluloses and glucose in an aqueous medium. Carbohydr. Polym. 91(1), 348–355 (2013). doi: 10.1016/j.carbpol.2012.08.073 CrossRefGoogle Scholar
  25. 25.
    C.Y. Tai, Y.-H. Wang, H.-S. Liu, A green process for preparing silver nanoparticles using spinning disk reactor. AIChE J. 54(2), 445–452 (2008). doi: 10.1002/aic.11396 CrossRefGoogle Scholar
  26. 26.
    M. Tsuji, K. Matsumoto, P. Jiang, R. Matsuo, S. Hikino, X.-L. Tang, K.S.N. Kamarudin, The role of adsorption species in the formation of Ag nanostructures by a microwave-polyol route. Bull. Chem. Soc. Jpn 81(3), 393–400 (2008)CrossRefGoogle Scholar
  27. 27.
    R. He, X. Qian, J. Yin, Z. Zhu, Preparation of polychrome silver nanoparticles in different solvents. J. Mater. Chem. 12(12), 3783–3786 (2002). doi: 10.1039/B205214H CrossRefGoogle Scholar
  28. 28.
    P.S. Mdluli, N.M. Sosibo, P.N. Mashazi, T. Nyokong, R.T. Tshikhudo, A. Skepu, E. van der Lingen, Selective adsorption of PVP on the surface of silver nanoparticles: a molecular dynamics study. J. Mol. Struct. 1004(1–3), 131–137 (2011). doi: 10.1016/j.molstruc.2011.07.049 CrossRefGoogle Scholar
  29. 29.
    Z. Zhang, B. Zhao, L. Hu, PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. J. Solid State Chem. 121(1), 105–110 (1996). doi: 10.1006/jssc.1996.0015 CrossRefGoogle Scholar
  30. 30.
    S.K. Das, A.R. Das, A.K. Guha, Microbial synthesis of multishaped gold nanostructures. Small 6(9), 1012–1021 (2010). doi: 10.1002/smll.200902011 CrossRefGoogle Scholar
  31. 31.
    V.J.G. Cynthia Jemima Swarnavalli, V. Kannappan, D. Roopsingh, A simple approach to the synthesis of hexagonal-shaped silver nanoplates. J. Nanomater. 2011, 825637 (2011). doi: 10.1155/2011/825637 Google Scholar
  32. 32.
    J.P.A. Šileikaite, I. Prosycevas, S. Tamulevicius, Investigation of silver nanoparticles formation kinetics during reduction of silver nitrate with sodium citrate. Mater. Sci. (MEDŽIAGOTYRA) 15(1), 21–27 (2009)Google Scholar
  33. 33.
    M. Kumar, L. Varshney, S. Francis, Radiolytic formation of Ag clusters in aqueous polyvinyl alcohol solution and hydrogel matrix. Radiat. Phys. Chem. 73(1), 21–27 (2005). doi: 10.1016/j.radphyschem.2004.06.006 CrossRefGoogle Scholar
  34. 34.
    D.S. Yu, X. Sun, J. Bian, Z. Tong, Y. Qian, Gamma-radiation synthesis, characterization and nonlinear optical properties of highly stable colloidal silver nanoparticles in suspensions. Phys. E 23(1–2), 50–55 (2004). doi: 10.1016/j.physe.2003.12.128 CrossRefGoogle Scholar
  35. 35.
    Y.N. Rao, D. Banerjee, A. Datta, S.K. Das, R. Guin, A. Saha, Gamma irradiation route to synthesis of highly re-dispersible natural polymer capped silver nanoparticles. Radiat. Phys. Chem. 79(12), 1240–1246 (2010). doi: 10.1016/j.radphyschem.2010.07.004 CrossRefGoogle Scholar
  36. 36.
    D.-H. Chen, S.-H. Wu, Synthesis of nickel nanoparticles in water-in-oil microemulsions. Chem. Mater. 12(5), 1354–1360 (2000). doi: 10.1021/cm991167y CrossRefGoogle Scholar
  37. 37.
    T.H.A.H. Fujiwara, Formation of rod shape secondary aggregation of copper nanoparticles in aqueous solution of sodium borohydride with stabilizing polymer. J. Phys. 61, 394–398 (2007)Google Scholar
  38. 38.
    E. Filippo, A. Serra, A. Buccolieri, D. Manno, Green synthesis of silver nanoparticles with sucrose and maltose: morphological and structural characterization. J. Non-Cryst. Solids 356(6–8), 344–350 (2010). doi: 10.1016/j.jnoncrysol.2009.11.021 CrossRefGoogle Scholar
  39. 39.
    O.S. Oluwafemi, Y. Lucwaba, A. Gura, M. Masabeya, V. Ncapayi, O.O. Olujimi, S.P. Songca, A facile completely ‘green’ size tunable synthesis of maltose-reduced silver nanoparticles without the use of any accelerator. Colloids Surf. B 102, 718–723 (2013). doi: 10.1016/j.colsurfb.2012.09.001 CrossRefGoogle Scholar
  40. 40.
    A.S. Hashmi, Inventing reactions: 45 (Springer, Berlin Heidelberg, 2013), pp. 143–164. doi: 10.1007/3418_2012_45 Google Scholar
  41. 41.
    S.S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, M. Sastry, Biological synthesis of triangular gold nanoprisms. Nat. Mater. 3(7), 482–488 (2004)CrossRefGoogle Scholar
  42. 42.
    J.L. Elechiguerra, J. Reyes-Gasga, M.J. Yacaman, The role of twinning in shape evolution of anisotropic noble metal nanostructures. J. Mater. Chem. 16(40), 3906–3919 (2006). doi: 10.1039/B607128G CrossRefGoogle Scholar
  43. 43.
    P. Prema, Chemical mediated synthesis of silver nanoparticles and its potential antibacterial application. Prog. Mol. Environ. Bioeng. From Anal. Model. Technol. Appl. (2011). doi: 10.5772/22114 Google Scholar
  44. 44.
    Y.K.T. Sukdeb Pal, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73(6), 1712–1720 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Suman Singh
    • 1
    Email author
  • Amardeep Bharti
    • 1
  • Vijay Kumar Meena
    • 1
  1. 1.Central Scientific Instruments Organisation (CSIR-CSIO)ChandigarhIndia

Personalised recommendations