Skip to main content
Log in

Green synthesis of multi-shaped silver nanoparticles: optical, morphological and antibacterial properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The manuscript deals with the green synthesis of anisotropic silver nanoparticles (AgNPs). For synthesis, the maltose has been used as reducing and polyvinyl pyrrolidone (PVP) as capping agent and the reaction has been initiated using microwave heating. A strong SPR band at 427 nm and a tail around 590 nm in UV–Vis spectrum of AgNPs, and TEM imaging confirmed the synthesis of anisotropic nanoparticles (NPs). Microwave irradiation time, silver precursor concentration and capping agent concentration affected the particle size as well as particle size distribution. Antibacterial behaviour of anisotropic AgNPs was better than their spherical counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Singh, D.V.S. Jain, M.L. Singla, Sol-gel based composite of gold nanoparticles as matix for tyrosinase for amperometric catechol biosensor. Sensors Actuators B: Chem. 182, 161–169 (2013). doi:10.1016/j.snb.2013.02.111

    Article  Google Scholar 

  2. Z.-Y. Zhou, N. Tian, J.-T. Li, I. Broadwell, S.-G. Sun, Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem. Soc. Rev. 40(7), 4167–4185 (2011). doi:10.1039/C0CS00176G

    Article  Google Scholar 

  3. R. Yu, Q. Lin, S.-F. Leung, Z. Fan, Nanomaterials and nanostructures for efficient light absorption and photovoltaics. Nano Energy 1(1), 57–72 (2012). doi:10.1016/j.nanoen.2011.10.002

    Article  Google Scholar 

  4. S. Singh, D.V.S. Jain, M.L. Singla, One step electrochemical synthesis of gold-nanoparticles-polypyrrole composite for application in catechin electrochemical biosensor. Anal. Methods 5(4), 1024–1032 (2013). doi:10.1039/C2AY26201K

    Article  Google Scholar 

  5. P.D. Suman Singh, D. Singh, D.V.S. Jain, M.L. Singla, Sensing behavior of silica-coated Au nanoparticles towards nitrobenzene. Gold Bull. 45, 75–81 (2012)

    Article  Google Scholar 

  6. C.O. Kappe, Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. 43(46), 6250–6284 (2004). doi:10.1002/anie.200400655

    Article  Google Scholar 

  7. C. Li, Y. Wei, A. Liivat, Y. Zhu, J. Zhu, Microwave-solvothermal synthesis of Fe3O4 magnetic nanoparticles. Mater. Lett. 107, 23–26 (2013). doi:10.1016/j.matlet.2013.05.117

    Article  Google Scholar 

  8. P.B. Gaston, G. Morales, M.L.L. Quintanilla, Microwave assisted synthesis of ZnO nanoparticles: effect of precursor reagents, temperature, irradiation time, and additives on nano-ZnO morphology development. J Mater. 2013, 11 (2013). doi:10.1155/2013/478681

    Google Scholar 

  9. M.I. Dar, A.K. Chandiran, M. Gratzel, M.K. Nazeeruddin, S.A. Shivashankar, Controlled synthesis of TiO2 nanoparticles and nanospheres using a microwave assisted approach for their application in dye-sensitized solar cells. J. Mater. Chem. A 2(6), 1662–1667 (2014). doi:10.1039/C3TA14130F

    Article  Google Scholar 

  10. G.A. Kahrilas, L.M. Wally, S.J. Fredrick, M. Hiskey, A.L. Prieto, J.E. Owens, Microwave-assisted green synthesis of silver nanoparticles using orange peel extract. ACS Sustain. Chem. Eng. 2(3), 367–376 (2013). doi:10.1021/sc4003664

    Article  Google Scholar 

  11. M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa, T. Tsuji, Microwave-assisted synthesis of metallic nanostructures in solution. Chem. Eur. J. 11(2), 440–452 (2005). doi:10.1002/chem.200400417

    Article  Google Scholar 

  12. S.M. Kazemzadeh, A. Hassanjani-Roshan, M.R. Vaezi, A. Shokuhfar, The effect of microwave irradiation time on appearance properties of silver nanoparticles. Trans. Indian Inst. Metals 64(3), 261–264 (2011). doi:10.1007/s12666-011-0053-1

    Article  Google Scholar 

  13. A. Panáček, L. Kvítek, R. Prucek, M. Kolář, R. Večeřová, N. Pizúrová, V.K. Sharma, T.J. Nevěčná, R. Zbořil, Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B 110(33), 16248–16253 (2006). doi:10.1021/jp063826h

    Article  Google Scholar 

  14. V.K. Sharma, R.A. Yngard, Y. Lin, Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 145(1–2), 83–96 (2009). doi:10.1016/j.cis.2008.09.002

    Article  Google Scholar 

  15. S. Rezaei-Zarchi, S. Imani, A. Mohammad Zand, M. Saadati, Z. Zaghari, Study of bactericidal properties of carbohydrate-stabilized platinum oxide nanoparticles. Int. Nano Lett. 2(1), 1–5 (2012). doi:10.1186/2228-5326-2-21

    Article  Google Scholar 

  16. M.A. Garza-Navarro, J.A. Aguirre-Rosales, E.E. Llanas-Vazquez, I.E. Moreno-Cortez, A. Torres-Castro, V. Gonzalez-Gonalez, Totally ecofriendly synthesis of silver nanoparticles from aqueous dissolutions of polysaccharides. Int. J. Polym. Sci. (2013). doi:10.1155/2013/436021

    Google Scholar 

  17. T. Mochochoko, O.S. Oluwafemi, D.N. Jumbam, S.P. Songca, Green synthesis of silver nanoparticles using cellulose extracted from an aquatic weed; water hyacinth. Carbohydr. Polym. 98(1), 290–294 (2013). doi:10.1016/j.carbpol.2013.05.038

    Article  Google Scholar 

  18. P. Raveendran, J. Fu, S.L. Wallen, Completely “green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 125(46), 13940–13941 (2003). doi:10.1021/ja029267j

    Article  Google Scholar 

  19. B. Ajitha, Y.A.K. Reddy, P.S. Reddy, Biosynthesis of silver nanoparticles using Plectranthus amboinicus leaf extract and its antimicrobial activity. Spectrochim. Acta Part A. Mol. Biomol. Spectrosc. 128, 257–262 (2014). doi:10.1016/j.saa.2014.02.105

    Article  Google Scholar 

  20. A.A. Kajani, A.-K. Bordbar, S.H. Zarkesh Khosropour, A.R. Esfahani, A. Razmjou, Green synthesis of anisotropic silver nanoparticles with potent anticancer activity using Taxus baccata extract. RSC Adv. 4(106), 61394–61403 (2014). doi:10.1039/C4RA08758E

    Article  Google Scholar 

  21. S. Singh, A. Bharti, V. Meena, Structural, thermal, zeta potential and electrical properties of disaccharide reduced silver nanoparticles. J. Mater. Sci.: Mater. Electron. 25(9), 3747–3752 (2014). doi:10.1007/s10854-014-2085-x

    Google Scholar 

  22. N.N. Mallikarjuna, R.S. Varma, Microwave-assisted shape-controlled bulk synthesis of noble nanocrystals and their catalytic properties. Cryst. Growth Des. 7(4), 686–690 (2007). doi:10.1021/cg060506e

    Article  Google Scholar 

  23. K.J. Sreeram, M. Nidhin, B.U. Nair, Microwave assisted template synthesis of silver nanoparticles. Bull. Mater. Sci. 31(7), 937–942 (2008). doi:10.1007/s12034-008-0149-3

    Article  Google Scholar 

  24. H. Peng, A. Yang, J. Xiong, Green, microwave-assisted synthesis of silver nanoparticles using bamboo hemicelluloses and glucose in an aqueous medium. Carbohydr. Polym. 91(1), 348–355 (2013). doi:10.1016/j.carbpol.2012.08.073

    Article  Google Scholar 

  25. C.Y. Tai, Y.-H. Wang, H.-S. Liu, A green process for preparing silver nanoparticles using spinning disk reactor. AIChE J. 54(2), 445–452 (2008). doi:10.1002/aic.11396

    Article  Google Scholar 

  26. M. Tsuji, K. Matsumoto, P. Jiang, R. Matsuo, S. Hikino, X.-L. Tang, K.S.N. Kamarudin, The role of adsorption species in the formation of Ag nanostructures by a microwave-polyol route. Bull. Chem. Soc. Jpn 81(3), 393–400 (2008)

    Article  Google Scholar 

  27. R. He, X. Qian, J. Yin, Z. Zhu, Preparation of polychrome silver nanoparticles in different solvents. J. Mater. Chem. 12(12), 3783–3786 (2002). doi:10.1039/B205214H

    Article  Google Scholar 

  28. P.S. Mdluli, N.M. Sosibo, P.N. Mashazi, T. Nyokong, R.T. Tshikhudo, A. Skepu, E. van der Lingen, Selective adsorption of PVP on the surface of silver nanoparticles: a molecular dynamics study. J. Mol. Struct. 1004(1–3), 131–137 (2011). doi:10.1016/j.molstruc.2011.07.049

    Article  Google Scholar 

  29. Z. Zhang, B. Zhao, L. Hu, PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. J. Solid State Chem. 121(1), 105–110 (1996). doi:10.1006/jssc.1996.0015

    Article  Google Scholar 

  30. S.K. Das, A.R. Das, A.K. Guha, Microbial synthesis of multishaped gold nanostructures. Small 6(9), 1012–1021 (2010). doi:10.1002/smll.200902011

    Article  Google Scholar 

  31. V.J.G. Cynthia Jemima Swarnavalli, V. Kannappan, D. Roopsingh, A simple approach to the synthesis of hexagonal-shaped silver nanoplates. J. Nanomater. 2011, 825637 (2011). doi:10.1155/2011/825637

    Google Scholar 

  32. J.P.A. Šileikaite, I. Prosycevas, S. Tamulevicius, Investigation of silver nanoparticles formation kinetics during reduction of silver nitrate with sodium citrate. Mater. Sci. (MEDŽIAGOTYRA) 15(1), 21–27 (2009)

    Google Scholar 

  33. M. Kumar, L. Varshney, S. Francis, Radiolytic formation of Ag clusters in aqueous polyvinyl alcohol solution and hydrogel matrix. Radiat. Phys. Chem. 73(1), 21–27 (2005). doi:10.1016/j.radphyschem.2004.06.006

    Article  Google Scholar 

  34. D.S. Yu, X. Sun, J. Bian, Z. Tong, Y. Qian, Gamma-radiation synthesis, characterization and nonlinear optical properties of highly stable colloidal silver nanoparticles in suspensions. Phys. E 23(1–2), 50–55 (2004). doi:10.1016/j.physe.2003.12.128

    Article  Google Scholar 

  35. Y.N. Rao, D. Banerjee, A. Datta, S.K. Das, R. Guin, A. Saha, Gamma irradiation route to synthesis of highly re-dispersible natural polymer capped silver nanoparticles. Radiat. Phys. Chem. 79(12), 1240–1246 (2010). doi:10.1016/j.radphyschem.2010.07.004

    Article  Google Scholar 

  36. D.-H. Chen, S.-H. Wu, Synthesis of nickel nanoparticles in water-in-oil microemulsions. Chem. Mater. 12(5), 1354–1360 (2000). doi:10.1021/cm991167y

    Article  Google Scholar 

  37. T.H.A.H. Fujiwara, Formation of rod shape secondary aggregation of copper nanoparticles in aqueous solution of sodium borohydride with stabilizing polymer. J. Phys. 61, 394–398 (2007)

    Google Scholar 

  38. E. Filippo, A. Serra, A. Buccolieri, D. Manno, Green synthesis of silver nanoparticles with sucrose and maltose: morphological and structural characterization. J. Non-Cryst. Solids 356(6–8), 344–350 (2010). doi:10.1016/j.jnoncrysol.2009.11.021

    Article  Google Scholar 

  39. O.S. Oluwafemi, Y. Lucwaba, A. Gura, M. Masabeya, V. Ncapayi, O.O. Olujimi, S.P. Songca, A facile completely ‘green’ size tunable synthesis of maltose-reduced silver nanoparticles without the use of any accelerator. Colloids Surf. B 102, 718–723 (2013). doi:10.1016/j.colsurfb.2012.09.001

    Article  Google Scholar 

  40. A.S. Hashmi, Inventing reactions: 45 (Springer, Berlin Heidelberg, 2013), pp. 143–164. doi:10.1007/3418_2012_45

    Google Scholar 

  41. S.S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, M. Sastry, Biological synthesis of triangular gold nanoprisms. Nat. Mater. 3(7), 482–488 (2004)

    Article  Google Scholar 

  42. J.L. Elechiguerra, J. Reyes-Gasga, M.J. Yacaman, The role of twinning in shape evolution of anisotropic noble metal nanostructures. J. Mater. Chem. 16(40), 3906–3919 (2006). doi:10.1039/B607128G

    Article  Google Scholar 

  43. P. Prema, Chemical mediated synthesis of silver nanoparticles and its potential antibacterial application. Prog. Mol. Environ. Bioeng. From Anal. Model. Technol. Appl. (2011). doi:10.5772/22114

    Google Scholar 

  44. Y.K.T. Sukdeb Pal, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73(6), 1712–1720 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the financial support received from Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the network project ‘BIOCERAM’, Project No. ESC-0103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Bharti, A. & Meena, V.K. Green synthesis of multi-shaped silver nanoparticles: optical, morphological and antibacterial properties. J Mater Sci: Mater Electron 26, 3638–3648 (2015). https://doi.org/10.1007/s10854-015-2881-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2881-y

Keywords

Navigation