Complex impedance spectroscopy of high-k HfO2 thin films in Al/HfO2/Si capacitor for gate oxide applications

  • Madhuchhanda Nath
  • Asim RoyEmail author


The dielectric responses of ultrathin (~6.65 nm) HfO2 films, in the form of Al/HfO2/Si capacitors were prepared by rf sputtering technique, has been studied in the wide frequency range as a function of deposition temperatures. Deposition temperatures were varied from room temperature (30 °C) to 500 °C. Thickness and the interfacial and surface roughness of heterostructures were extracted by fitting the specular X-ray reflectivity data. The impedance analysis combined with modulus spectroscopy was performed to get insight of the microscopic features like grain, grain boundary and film–electrode interfaces and their effects in the film properties. The films exhibited maximum frequency dispersion in both real and imaginary part of impedance at low frequency range. The frequency analysis of the modulus and impedance studies showed the distribution of the relaxation times due to the presence of grains and grain boundaries in the films. Impedance analysis revealed that the interfacial polarization caused by space charges in the film/electrode interfaces plays an important role in the dielectric behavior of the capacitor. In order to explain effectively that the impedance plots contain one or two arcs due to more than one relaxation contributions, the results are interpreted using the approach proposed by Abrantes (Z / vs. |Z // |/f representation). The dielectric loss (tan δ) curves exhibited the fact that there is possibility of existence of a Schottky barrier at the insulator semiconductor interface, which is due to traps distributed throughout the semiconductor-insulator interface and it is believed to be due to auto doping during deposition process. The ac conductivity, σ ac (ω), varies as σ ac (ω) =  n with n in the range 0.06–0.71.


Dielectric Loss Bias Voltage Interfacial Layer HfO2 Deposition Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243 (2001)CrossRefGoogle Scholar
  2. 2.
    G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, G. Ghibaudo, IEEE Trans. Device Mater. Reliab. 5, 5 (2005)CrossRefGoogle Scholar
  3. 3.
    M.L. Green, E.P. Gusev, R. Degraeve, E.J. Garfunkel, Appl. Phys. Rev. 90, 2057 (2001)CrossRefGoogle Scholar
  4. 4.
    J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265 (2004)CrossRefGoogle Scholar
  5. 5.
    G. He, L. Zhu, Z. Sun, Q. Wan, L. Zhang, Prog. Mater. Sci. 56, 475 (2011)CrossRefGoogle Scholar
  6. 6.
    G. He, B. Deng, Z. Sun, X. Chen, Y. Liu, L. Zhang, Crit. Rev. Solid State Mater. Sci. 38, 235 (2013)CrossRefGoogle Scholar
  7. 7.
    R. M. Wallace, G. Wilk, MRS Bull. 27, 192 (2002)CrossRefGoogle Scholar
  8. 8.
    E.P. Gusev Jr, C. Cabral, M. Copel, C. D’Emic, M. Gribelyuk, Microelectron. Eng. 69, 145 (2003)CrossRefGoogle Scholar
  9. 9.
    D. Wei, T. Hossain, N.Y. Garces, N. Nepal, H.M. Meyer III, M.J. Jr. Kirkham, C.R. Eddy, J.H. Edgara, ECS J. Solid State Sci. Technol. 2(5), 110 (2013)CrossRefGoogle Scholar
  10. 10.
    G. He, X. Chen, Z. Sun, Surf. Sci. Rep. 68, 68 (2013)CrossRefGoogle Scholar
  11. 11.
    D. Wei, T. Hossain, N.Y. Garces, N. Nepal, H.M. Meyer III, M.J. Jr. Kirkham, C.R. Eddy, J.H. Edgara, ECS J. Solid State Sci. Technol. 2(5), N110 (2013)CrossRefGoogle Scholar
  12. 12.
    W.C. Chin, K.Y. Cheong, J. Mater. Sci. Mater. Electron. 22, 1816 (2011)CrossRefGoogle Scholar
  13. 13.
    G. He, L.D. Zhang, M. Liu, Z.Q. Sun, Appl. Phys. Lett. 97, 62908 (2010)CrossRefGoogle Scholar
  14. 14.
    G. He, M. Liu, L.Q. Zhu, M. Chang, Q. Fang, L.D. Zhang, Surf. Sci. 576, 67 (2005)CrossRefGoogle Scholar
  15. 15.
    J. Zhang, Z. Li, H. Zhou, C. Ye, H. Wang, Appl. Surf. Sci. 294, 58 (2014)CrossRefGoogle Scholar
  16. 16.
    C.C. Lung, J.H. Horng, K.S. Chang-Liao, J.T. Jeng, H.Y. Tsai, Solid State Electron 54, 1197 (2010)CrossRefGoogle Scholar
  17. 17.
    D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)CrossRefGoogle Scholar
  18. 18.
    D.C. Sinclair, A.R. West, J. Mater. Sci. 29, 6061 (1994)CrossRefGoogle Scholar
  19. 19.
    S. Saha, S.B. Krupanidhi, J. Appl. Phys. 87, 849 (2000)CrossRefGoogle Scholar
  20. 20.
    L.G. Parratt, Phys. Rev. 95, 359 (1954)CrossRefGoogle Scholar
  21. 21.
    N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Phys. Rev B 77, 14111 (2008)CrossRefGoogle Scholar
  22. 22.
    J.H. Lee, H. Chou, G.H. Wen, G.H. Hwang, J. Appl. Phys. 107, 23907 (2010)CrossRefGoogle Scholar
  23. 23.
    G.Z. Liu, Can Wang, C.C. Wang, J. Qiu, M. He, J. Xing, K.J. Jin, H.B. Lu, Y.G. Zhen, Appl. Phys. Lett. 92, 122903 (2008)CrossRefGoogle Scholar
  24. 24.
    J.C.C. Abrantes, J.A. Labrincha, J.R. Frade, Mater. Res. Bull. 35, 727 (2000)CrossRefGoogle Scholar
  25. 25.
    B. Das, M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, J. Mater. Chem. 21, 1171 (2011)CrossRefGoogle Scholar
  26. 26.
    A.K. Jonscher, Dielectric Relaxation of Solids (Dielectrics Press, Chelsea, 1981)Google Scholar
  27. 27.
    V.V. Daniel, Dielectric Relaxation (Academic, London, 1967)Google Scholar
  28. 28.
    A. Tataroğlu, M. Yıldırım, H.M. Baran, Mater. Sci. Semicond. Process. 28, 89 (2014)CrossRefGoogle Scholar
  29. 29.
    O. Pakma, N. Serin, S. Altindal, J. Phys. D Appl. Phys. 41, 215103 (2008)CrossRefGoogle Scholar
  30. 30.
    K. Prabakar, S.K. Narayandass, D. Mangalaraj, Mater. Chem. Phys. 78, 809 (2003)CrossRefGoogle Scholar
  31. 31.
    G.S. Nadkarni, J.G. Simmons, J. Appl. Phys. 47, 1 (1976)CrossRefGoogle Scholar
  32. 32.
    A.K. Johnscher, Nature 267, 673 (1977)CrossRefGoogle Scholar
  33. 33.
    C.K. Suman, J. Yun, S. Kim, D. Lee, C. Lee, Curr. Appl. Phys. 9, 978 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of Technology SilcharSilcharIndia

Personalised recommendations