Advertisement

Improvement of thermoelectric properties in Ca3Co4O9 ceramics by Ba doping

  • G. ConstantinescuEmail author
  • Sh. Rasekh
  • M. A. Torres
  • M. A. Madre
  • A. Sotelo
  • J. C. Diez
Article

Abstract

Ca3−xBaxCo4O9 bulk polycrystalline thermoelectric ceramics with x = 0.00, 0.01, 0.03 and 0.05 have been prepared through a classical solid state method. Microstructural characterizations of sintered samples have shown that Ba has been incorporated into the Ca3Co4O9 and/or Ca3Co2O6 structures and that no Ba-based secondary phases have been produced. The apparent density values increase when the amount of barium is raised with respect to the undoped samples, reaching a maximum value of around 77 % of the Ca3Co4O9 theoretical density, for samples with the highest amount of barium. Electrical resistivity of doped samples decreases in the whole measured temperature range with respect to the undoped ones, while Seebeck coefficient remains practically unchanged. In conclusion, the improvement in resistivity leads to power factor values which are higher than the ones measured in undoped samples, fact which makes this bulk polycrystalline compound a promising candidate for high-temperature power generation applications in oxidative environments.

Keywords

Electrical Resistivity Spark Plasma Sinter Seebeck Coefficient Dope Sample Energy Dispersive Spectrometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors wish to thank the MINECO-FEDER (project MAT2013-46505-C3-1-R) and the Gobierno de Aragón (Research Groups T12 and T87) for financial support. The technical contributions of C. Estepa, and C. Gallego are also acknowledged.

References

  1. 1.
    D.M. Rowe, Thermoelectrics Handbook: Macro to Nano, 1st edn. (CRC Press, Boca Raton, 2006), p. 1Google Scholar
  2. 2.
    G. Mahan, B. Sales, J. Sharp, Phys. Today 50, 42 (1997)CrossRefGoogle Scholar
  3. 3.
    H. Naito, Y. Kohsaka, D. Cooke, H. Arashi, Sol. Energy 58, 191 (1996)CrossRefGoogle Scholar
  4. 4.
    C.M. Kim, Y.J. Hwang, Y.H. Ryu, Air conditioner for individual cooling/heating, US Patent US6393842. May, 2002Google Scholar
  5. 5.
    I. Terasaki, Y. Sasago, K. Uchinokura, Phys. Rev. B 56, 12685 (1997)CrossRefGoogle Scholar
  6. 6.
    M.A. Madre, Sh Rasekh, J.C. Diez, A. Sotelo, Mater. Lett. 64, 2566 (2010)CrossRefGoogle Scholar
  7. 7.
    A. Sotelo, Sh Rasekh, M.A. Madre, E. Guilmeau, S. Marinel, J.C. Diez, J. Eur. Ceram. Soc. 31, 1763 (2011)CrossRefGoogle Scholar
  8. 8.
    G. Constantinescu, Sh Rasekh, M.A. Torres, M.A. Madre, J.C. Diez, A. Sotelo, Scripta Mater. 68, 75 (2013)CrossRefGoogle Scholar
  9. 9.
    R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani, S. Sodeoka, Jpn. J. Appl. Phys. 39, L1127 (2000)CrossRefGoogle Scholar
  10. 10.
    A. Sotelo, G. Constantinescu, Sh Rasekh, M.A. Torres, J.C. Diez, M.A. Madre, J. Eur. Ceram. Soc. 32, 2415 (2012)CrossRefGoogle Scholar
  11. 11.
    A. Maignan, S. Hébert, M. Hervieu, C. Michel, D. Pelloquin, D. Khomskii, J. Phys.: Condens. Matter 15, 2711 (2003)Google Scholar
  12. 12.
    H. Itahara, C. Xia, J. Sugiyama, T. Tani, J. Mater. Chem. 14, 61 (2004)CrossRefGoogle Scholar
  13. 13.
    A. Maignan, D. Pelloquin, S. Hébert, Y. Klein, M. Hervieu, Bol. Soc. Esp. Ceram. 45, 122 (2006)CrossRefGoogle Scholar
  14. 14.
    S. Demirel, M.A. Aksan, S. Altin, J. Mater. Sci.: Mater. Electron. 23, 2251 (2012)Google Scholar
  15. 15.
    A. Sotelo, Sh Rasekh, E. Guilmeau, M.A. Madre, M.A. Torres, S. Marinel, J.C. Diez, Mater. Res. Bull. 46, 2537 (2011)CrossRefGoogle Scholar
  16. 16.
    A. Sotelo, E. Guilmeau, Sh Rasekh, M.A. Madre, S. Marinel, J.C. Diez, J. Eur. Ceram. Soc. 30, 1815 (2010)CrossRefGoogle Scholar
  17. 17.
    Sh Rasekh, M.A. Madre, J.C. Diez, E. Guilmeau, S. Marinel, A. Sotelo, Bol. Soc. Esp. Ceram. 49, 371 (2010)Google Scholar
  18. 18.
    A. Sotelo, M.A. Torres, G. Constantinescu, Sh Rasekh, J.C. Diez, M.A. Madre, J. Eur. Ceram. Soc. 32, 3745 (2012)CrossRefGoogle Scholar
  19. 19.
    A. Sotelo, Sh Rasekh, G. Constantinescu, M.A. Torres, M.A. Madre, J.C. Diez, Ceram. Int. 39, 1597 (2013)CrossRefGoogle Scholar
  20. 20.
    V. Garnier, R. Caillard, A. Sotelo, G. Desgardin, Phys. C 319, 197 (1999)CrossRefGoogle Scholar
  21. 21.
    H. Wang, X. Sun, X. Yan, D. Huo, X. Li, J.-G. Li, X. Ding, J. Alloys Compd. 582, 294 (2014)CrossRefGoogle Scholar
  22. 22.
    S. Butt, Y.-C. Liu, J.-L. Lan, K. Shehzad, B. Zhan, Y. Lin, C.-W. Nan, J. Alloys Compd. 588, 277 (2014)CrossRefGoogle Scholar
  23. 23.
    Y. Liu, Y. Lin, C.-W. Nan, Z. Shen, J. Am. Ceram. Soc. 88, 1337 (2005)CrossRefGoogle Scholar
  24. 24.
    S. Marinel, D. Bourgault, O. Belmont, A. Sotelo, G. Desgardin, Phys. C 315, 205 (1999)CrossRefGoogle Scholar
  25. 25.
    A. Sotelo, E. Guilmeau, M.A. Madre, S. Marinel, J.C. Diez, M. Prevel, J. Eur. Ceram. Soc. 27, 3697 (2007)CrossRefGoogle Scholar
  26. 26.
    J.C. Diez, Sh Rasekh, M.A. Madre, E. Guilmeau, S. Marinel, A. Sotelo, J. Electron. Mater. 39, 1601 (2010)CrossRefGoogle Scholar
  27. 27.
    J.C. Diez, L.A. Angurel, H. Miao, J.M. Fernandez, G.F. De la Fuente, Supercond. Sci. Technol. 11, 101 (1998)CrossRefGoogle Scholar
  28. 28.
    N.M. Ferreira, Sh Rasekh, A.J.S. Fernandes, F.M. Costa, M.A. Madre, J.C. Diez, A. Sotelo, Microsc. Microanal. 18, 93 (2012)CrossRefGoogle Scholar
  29. 29.
    N.M. Ferreira, Sh Rasekh, F.M. Costa, M.A. Madre, A. Sotelo, J.C. Diez, M.A. Torres, Mater. Lett. 83, 144 (2012)CrossRefGoogle Scholar
  30. 30.
    M.M. Seabaugh, I.H. Kerscht, C.L. Messing, J. Am. Ceram. Soc. 80, 1181 (1997)CrossRefGoogle Scholar
  31. 31.
    A. Sotelo, E. Guilmeau, M.A. Madre, S. Marinel, S. Lemmonier, J.C. Diez, Bol. Soc. Esp. Ceram. 47, 225 (2008)CrossRefGoogle Scholar
  32. 32.
    J.C. Diez, E. Guilmeau, M.A. Madre, S. Marinel, S. Lemmonier, A. Sotelo, Solid State Ionics 180, 827 (2009)CrossRefGoogle Scholar
  33. 33.
    Sh Rasekh, G. Constantinescu, M.A. Torres, M.A. Madre, J.C. Diez, A. Sotelo, Adv. Appl. Ceram. 111, 490 (2012)CrossRefGoogle Scholar
  34. 34.
    Y.C. Liou, W.C. Tsai, W.Y. Lin, U.R. Lee, J. Aust. Ceram. Soc. 44, 17 (2008)Google Scholar
  35. 35.
    M.A. Madre, F.M. Costa, N.M. Ferreira, A. Sotelo, M.A. Torres, G. Constantinescu, Sh Rasekh, J.C. Diez, J. Eur. Ceram. Soc. 33, 1747 (2013)CrossRefGoogle Scholar
  36. 36.
    E. Woermann, A. Muan, J. Inorg. Nucl. Chem. 32, 1455 (1970)CrossRefGoogle Scholar
  37. 37.
    D. Sedmidubský, V. Jakeš, O. Jankovský, J. Leitner, Z. Sofer, J. Hejtmánek, J. Solid State Chem. 194, 199 (2012)CrossRefGoogle Scholar
  38. 38.
    L.L.Y. Chang, Am. Mineral. 56, 1660 (1971)Google Scholar
  39. 39.
    I. Matsubara, R. Funahashi, T. Takeuchi, S. Sodeoka, J. Appl. Phys. 90, 462 (2001)CrossRefGoogle Scholar
  40. 40.
    S. Yoon, O.-J. Kwon, M.-J. Jung, J. Yoo, C. Park, K.H. Chae, Powder Diffr. 26, 273 (2011)CrossRefGoogle Scholar
  41. 41.
    X. Song, Y. Chen, S. Chen, E. Barbero, E.L. Thomas, P. Barnes, Solid State Commun. 152, 1509 (2012)CrossRefGoogle Scholar
  42. 42.
    M.A. Torres, A. Sotelo, Sh Rasekh, I. Serrano, G. Constantinescu, M.A. Madre, J.C. Diez, Bol. Soc. Esp. Ceram. 51, 1 (2012)CrossRefGoogle Scholar
  43. 43.
    A.F. Ioffe, Physics of Semiconductors (Academic Press Inc., New York, 1960), p. 305Google Scholar
  44. 44.
    M. Prevel, E.S. Reddy, O. Perez, W. Kobayashi, I. Terasaki, C. Goupil, J.G. Noudem, Jpn. J. Appl. Phys. 46, 6533 (2007)CrossRefGoogle Scholar
  45. 45.
    W. Koshibae, K. Tsutsui, S. Maekawa, Phys. Rev. B 62, 6869 (2000)CrossRefGoogle Scholar
  46. 46.
    I. Matsubara, R. Funahashi, M. Shikano, K. Sasaki, H. Enomoto, Appl. Phys. Lett. 80, 4729 (2002)CrossRefGoogle Scholar
  47. 47.
    L.B. Wang, A. Maignan, D. Pelloquin, S. Hebert, B. Raveau, J. Appl. Phys. 92, 124 (2002)CrossRefGoogle Scholar
  48. 48.
    Y. Wang, Y. Sui, F. Li, L. Xu, X. Wang, W. Su, X. Liu, Nano Energy 1, 456 (2012)CrossRefGoogle Scholar
  49. 49.
    F.P. Zhang, Q.M. Lu, J.X. Zhang, J. Alloys Compd. 484, 550 (2009)CrossRefGoogle Scholar
  50. 50.
    J. Xu, C. Wei, K. Jia, J. Alloys Compds. 500, 227 (2010)CrossRefGoogle Scholar
  51. 51.
    N.F. Mott, H. Jones, The Theory of the Properties of Metals and Alloys (Dover, New York, 1958), p. 305Google Scholar
  52. 52.
    S. Pinitsoontorn, N. Lerssongkram, N. Keawprak, V. Amornkitbamrung, J. Mater. Sci.: Mater. Electron. 23, 1050 (2012)Google Scholar
  53. 53.
    A.C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau, J. Hejtmanek, Phys. Rev. B 62, 166 (2000)CrossRefGoogle Scholar
  54. 54.
    N.V. Nong, A.J. Samson, N. Pryds, S. Linderoth, J. Electron. Mater. 41, 1280 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • G. Constantinescu
    • 1
    Email author
  • Sh. Rasekh
    • 2
  • M. A. Torres
    • 2
  • M. A. Madre
    • 2
  • A. Sotelo
    • 2
  • J. C. Diez
    • 2
  1. 1.National Institute of Materials PhysicsMagureleRomania
  2. 2.Department of Science and Technology of Materials and FluidsICMA (CSIC-Universidad de Saragossa)SaragossaSpain

Personalised recommendations