Advertisement

Synthesis of 3D “micro-nano-structure” LiFePO4/C with high-rate capability and high tap density via a water bath process

  • Xiaoming LouEmail author
  • Jiali Huang
  • Hanxiang Hu
  • Tanping Li
  • Bonian Hu
Article

Abstract

The 3D “micro-nano-structure” LiFePO4/C have been synthesized successfully from FePO4·2H2O precursor via a simple, inexpensive and continuously water bath process at 100 °C for 24 h by using Fe3+ as the iron source, followed by a rheological phase method. Both the properties of the FePO4·2H2O and the LiFePO4/C were investigated by XRD and SEM. The results indicated that the 3D “micro-nano-structure” materials composited of nanoplates which are about 100 nm long and 50 nm thick, and had a hole in the center. Moreover, the FePO4·2H2O had a high yield above 85 %. Furthermore, the 3D “micro-nano-structure” LiFePO4/C as cathode materials for Li-ion batteries were also evaluated. The materials showed excellent high-rate capability, with discharge capacities reaching 103 and 80 mAh g−1 at high rates of 10 and 20 C, even could reach 40 mAh g−1 when the current increased to 30 C. Moreover, the LiFePO4/C had a high tap density about 1.5 g cm−3. As a result, the 3D “micro-nano-structure” LiFePO4/C can be the cathode material for large-scale applications and industrialization.

Keywords

Cathode Material LiFePO4 FePO4 Li3PO4 Excellent Electrochemical Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study was supported by National Science Foundation of China (No. 21476066). The Natural Science Foundation of Hunan Province Project (No. 13JJ6084), The construct program of the key discipline in Hunan Province of the 12th Five-Year Plan (No. 080502), and The Excellent Engineering Project of the Department of Education of China during the 12th Five-Year Plan (No. 080203).

References

  1. 1.
    V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 4, 3243 (2011)CrossRefGoogle Scholar
  2. 2.
    P.G. Bruce, B. Scrosati, J.-M. Tarascon, Angew. Chem. Int. Ed. 47, 2930 (2008)CrossRefGoogle Scholar
  3. 3.
    B.C. Melot, J.-M. Tarascon, Acc. Chem. Res. 46, 1226 (2013)CrossRefGoogle Scholar
  4. 4.
    Z. Gong, Y. Yang, Energy Environ. Sci. 4, 3223 (2011)CrossRefGoogle Scholar
  5. 5.
    J. Miot, N. Recham, D. Larcher, F. Guyot, J. Brest, J.-M. Tarascon, Energy Environ. Sci. 7, 451 (2014)CrossRefGoogle Scholar
  6. 6.
    J. Wang, J. Yang, Y. Zhang, Y. Li, Y. Tang, M.N. Banis, X. Li, G. Liang, R. Li, X. Sun, Adv. Funct. Mater. 23, 806 (2013)CrossRefGoogle Scholar
  7. 7.
    W.C. Chueh, F.E. Gabaly, J.D. Sugar, N.C. Bartelt, A.H. McDaniel, K.R. Fenton, K.R. Zavadil, T. Tyliszczak, W. Lai, K.F. McCarty, Nano Lett. 13, 866 (2013)CrossRefGoogle Scholar
  8. 8.
    D. Li, X. Liu, H.S. Zhou, Energy Technol. 6, 542 (2014)CrossRefGoogle Scholar
  9. 9.
    H. Tang, J. Xu, Mater. Sci. Eng. B 178, 1503 (2013)CrossRefGoogle Scholar
  10. 10.
    A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144, 1188 (1997)CrossRefGoogle Scholar
  11. 11.
    L. Wang, G.C. Liang, X.Q. Ou, X.K. Zhi, J.P. Zhang, J.Y. Cui, J. Power Sources 189, 423 (2009)CrossRefGoogle Scholar
  12. 12.
    B. Kang, G. Ceder, Nature 458, 190 (2009)CrossRefGoogle Scholar
  13. 13.
    R. Muruganantham, M. Sivakumar, R. Subadevi, N.-L. Wu, J. Mater. Sci. Mater. Electron. (2015). doi: 10.1007/S10854-014-2653-0
  14. 14.
    Z.Z. Wang, H.F. Guo, P. Yan, Ceram. Int. 40, 15801 (2014)CrossRefGoogle Scholar
  15. 15.
    S.Y. Chung, J.T. Bloking, Y.M. Chiang, Nat. Mater. 1, 123 (2002)CrossRefGoogle Scholar
  16. 16.
    D. Shao, J. Wang, X. Dong, W. Yu, G. Liu, F. Zhang, L. Wang, J. Mater. Sci. Mater. Electron. 25, 1040 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Talebi-Esfandarani, O. Savadogo, Solid State Ion. 261, 81 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Chen, J. Mao, J. Mater. Sci. Mater. Electron. 25, 5153 (2014)CrossRefGoogle Scholar
  19. 19.
    X. Lou, Y. Zhang, J. Mater. Chem. 21, 4156 (2011)CrossRefGoogle Scholar
  20. 20.
    Y. Ma, X. Li, Z. Xie, Z. Xiu, Y. Wu, X. Hao, J. Mater. Sci. Mater. Electron. 25, 2716 (2014)CrossRefGoogle Scholar
  21. 21.
    R. Mei, X. Song, Y. Yang, Z. An, J. Zhang, RSC Adv. 4, 5746 (2014)CrossRefGoogle Scholar
  22. 22.
    J.W. Long, B. Dunn, D.R. Rolison, H.S. White, Chem. Rev. 104, 4463 (2004)CrossRefGoogle Scholar
  23. 23.
    M.M. Shaijumon, E. Perre, B. Daffos, P.-L. Taberna, J.-M. Tarascon, P. Simon, Adv. Mater. 22, 4978 (2010)CrossRefGoogle Scholar
  24. 24.
    C. Sun, S. Rajasekhara, J.B. Goodenough, F. Zhou, J. Am. Chem. Soc. 133, 2132 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Xiaoming Lou
    • 1
    Email author
  • Jiali Huang
    • 1
  • Hanxiang Hu
    • 1
  • Tanping Li
    • 1
  • Bonian Hu
    • 1
  1. 1.The Institute of Construction Materials, Department of Materials and Chemical EngineeringHunan Institute of TechnologyHengyangChina

Personalised recommendations