Highly efficient photocatalytic performance of graphene oxide/TiO2–Bi2O3 hybrid coating for organic dyes and NO gas

  • Chuansheng ChenEmail author
  • Shiyi Cao
  • Hui Long
  • Guoping Qian
  • Yuenhong TsangEmail author
  • Li Gong
  • Weiwei Yu
  • Yi Xiao


To enhance the recyclability and operability of graphene oxide/TiO2–Bi2O3 (GO–T–B) hybrids photocatalyst in water solution, we studied its photocatalytic activity for degradation of organics pollution and removal of NO gas, respectively, by using the fabricated GO–T–B hybrid coatings. Experimental results showed that the GO–T–B hybrid coating exhibited better photocatalytic activity for RhB and MO than P25 coating, as well as an excellent photocatalytic activity for NO gas, where the removal ratio of NO gas reaches 78.5 % within 60 min. The nanoparticles coating is a simple and valid method to improve the recyclability of nanoparticles. The resultant GO–T–B hybrid coating has great potential for the applications of sewage treatment and air cleaning.


TiO2 Photocatalytic Activity Methyl Orange Bi2O3 Hybrid Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the National Science Foundation of China (No. 51302021), Hunan Provincial Natural Science Foundation of China (No. 14JJ2077), the Construct Program of the Key Discipline in Hunan Province, and Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province.


  1. 1.
    J. Schneider, M. Matsuoka, M. Takeuchi, Chem. Rev. 114, 9919–9986 (2014)CrossRefGoogle Scholar
  2. 2.
    H. Park, Y. Park, W. Kim, J. Photochem. Photobiol. C 15, 1–20 (2013)CrossRefGoogle Scholar
  3. 3.
    W.J. Ong, L.L. Tan, S.P. Chai, ChemSusChem 7, 690–719 (2014)CrossRefGoogle Scholar
  4. 4.
    J. Ângelo, L. Andrade, A. Mendes, Appl. Catal. A Gen. 484, 17–25 (2014)CrossRefGoogle Scholar
  5. 5.
    C.L. Bianchi, C. Pirola, E. Selli, S. Biella, J. Hazard. Mater. 211–212, 203–207 (2012)CrossRefGoogle Scholar
  6. 6.
    X.B. Chen, L. Liu, P.Y. Yu, S.S. Mao, Science 331, 746–750 (2011)CrossRefGoogle Scholar
  7. 7.
    S. Girish Kumar, L. Gomathi Devi, J. Phys. Chem. A 115, 13211–13241 (2011)CrossRefGoogle Scholar
  8. 8.
    H. Eskandarloo, A. Badiei, M.A. Behnajady, Ind. Eng. Chem. Res. 53, 6881–6895 (2014)CrossRefGoogle Scholar
  9. 9.
    R. Leary, A. Westwood, Carbon 49, 741–772 (2011)CrossRefGoogle Scholar
  10. 10.
    L. Zhou, W.Z. Wang, H.L. Xu, S.M. Sun, Chem. A Eur. J. 15, 1776–1782 (2009)CrossRefGoogle Scholar
  11. 11.
    A.K. Chakraborty, M.E. Hossain, M.M. Rhaman, K.M. Sobahan, J. Environ. Sci. 26, 458–465 (2014)CrossRefGoogle Scholar
  12. 12.
    D.Y. Li, Y.G. Zhang, Y.L. Zhang, X.F. Zhou, S.J. Guo, J. Hazard. Mater. 258–259, 42–49 (2013)CrossRefGoogle Scholar
  13. 13.
    P.W. Lv, M. Zheng, X. Wang, F. Huang, J. Alloy. Compd. 583, 285–290 (2014)CrossRefGoogle Scholar
  14. 14.
    M.N. Gómez-Cerezo, M.J. Muñoz-Batista, D. Tudela, Appl. Catal. B Environ. 156–157, 307–313 (2014)CrossRefGoogle Scholar
  15. 15.
    J.T. Zhang, Z.G. Xiong, X.S. Zhao, J. Mater. Chem. 21, 3634–3640 (2011)CrossRefGoogle Scholar
  16. 16.
    J. Wang, L. Shen, H. Li, Electrochim. Acta 133, 209–216 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Sha, N. Zhao, E. Liu, Carbon 68, 352–359 (2014)CrossRefGoogle Scholar
  18. 18.
    N. Zhang, M.Q. Yang, Z.R. Tang, J. Catal. 303, 60–69 (2013)CrossRefGoogle Scholar
  19. 19.
    R.C. Pawar, C.S. Lee, Appl. Catal. B Environ. 144, 57–65 (2014)CrossRefGoogle Scholar
  20. 20.
    Y. Zhang, Z. Chen, S. Liu, Appl. Catal. B Environ. 140–141, 598–607 (2013)CrossRefGoogle Scholar
  21. 21.
    X.J. Liu, L.K. Pan, T. Lv, Z. Sun, C.Q. Sun, J. Colloid Interface Sci. 408, 145–150 (2013)CrossRefGoogle Scholar
  22. 22.
    S.Y. Cao, C.S. Chen, T.G. Liu, B. Zeng, Catal. Commun. 46, 61–65 (2014)CrossRefGoogle Scholar
  23. 23.
    J. Hou, C. Yang, Z. Wang, S. Jiao, H. Zhu, Appl. Catal. B: Environ. 129, 333–341 (2014)CrossRefGoogle Scholar
  24. 24.
    J.S. Dalton, P.A. Janes, N.G. Jones, Environ. Pollut. 120, 415–422 (2002)CrossRefGoogle Scholar
  25. 25.
    M.M. Ballari, Q.L. Yu, H.J.H. Brouwers, Catal. Today 161, 175–180 (2011)CrossRefGoogle Scholar
  26. 26.
    J. Lasek, Y.H. Yu, Jeffrey, C.S. Wu, J Photochem. Photobiol. C 14, 29–52 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Chuansheng Chen
    • 1
    • 2
    Email author
  • Shiyi Cao
    • 1
  • Hui Long
    • 2
  • Guoping Qian
    • 3
  • Yuenhong Tsang
    • 2
    Email author
  • Li Gong
    • 1
  • Weiwei Yu
    • 1
  • Yi Xiao
    • 1
  1. 1.College of Physics and Electronic ScienceChangsha University of Science and TechnologyChangshaPeople’s Republic of China
  2. 2.Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong KongChina
  3. 3.School of Traffic and Transportation EngineeringChangsha University of Science and TechnologyChangshaPeople’s Republic of China

Personalised recommendations