Skip to main content
Log in

The oxidation process of NiSix film at high temperature in air and the antioxidant effect of SiOxNy/NiSix film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The NiSix film was deposited onto the quartz substrates by the direct current pulsed magnetron sputtering technique. With the increase of annealing temperature from 100 to 800 °C in air, the NiSix films with different properties were obtained. The characterization by Hall effect system showed that the electrical property of NiSix film was abrupltly deteriorated at the annealing temperature over 500 °C in air. The characterization by X-ray diffraction (XRD) system showed that the oxidation of Ni in NiSix film started and completed at the temperature of 400 and 600 °C in air, respectively. The scanning electron microscopy resuls showed that the oxidation of NiSix film started at the pin-holes/defects on film surface, and then diffused to the whole film. In order to avoid the oxidation of NiSix film at high temperature in air, the SiOxNy film was deposited onto the NiSix film by the same technique. The XRD results showed that the dense SiOxNy film could prevent the NiSix film from the oxidation at temperature of 800 °C in air. With the SiOxNy film, the NiCrx–NiSix film thermocouple could normally service at temperature of 800 °C in air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T.J. Seebeck, Magnetic polarization of metals and minerals. Abhandlungen der Deutschen Akademie der Wissenschafren zu Berlin 265, 1823 (1822)

    Google Scholar 

  2. D.M. Rowe, A-1 Introduction. CRC Handbook of Thermoelectrics (CRC Press, New York, 1995)

    Book  Google Scholar 

  3. D. Bendersky, A thermocouple for measuring transient temperatures. Mech. Eng. 75, 117 (1953)

    Google Scholar 

  4. Y. Cui, Development of Testing Temperature Cutter with NiCr/NiSi Thin Film Thermocouple for Transient Cutting, Ph. D thesis of Dalian University of Technology, Dalian (2011) (in Chinese with English abstract)

  5. Y. Xin, A. Hu, M. Li, D. Mao, Thermal stability and electrical characteristics of NiSi films with electroplated Ni(W) alloy. Appl. Surf. Sci. 257, 9351 (2011)

    Article  Google Scholar 

  6. W. Sassi, L. Dhouibi, P. Berçot, M. Rezrazi, E. Triki, Study of the electroplating mechanism and physicochemical proprieties of deposited Ni–W–Silicate composite alloy. Electrochi. Acta 117, 443 (2014)

    Article  Google Scholar 

  7. G. Utlu, N. Artunç, S. Selvi, Temperature and thickness dependence of the grain boundary scattering in the Ni–Si silicide films formed on silicon substrate at 500 °C by Rta. Mater. Chem. Phys. 132, 421 (2012)

    Article  Google Scholar 

  8. M. Ishikawa, I. Muramoto, H. Machida, S. Imai, A. Ogura, Y. Ohshita, Chemical vapor deposition of NiSi using Ni(PF3)4 and Si3H8. Thin Solid Films 515, 8246 (2007)

    Article  Google Scholar 

  9. N.F.F.B. Nazarudin, S.N.A.B. Azizan, S.A. Rahman, B.T. Goh, Growth and structural property studies on NiSi/SiC core-shell nanowires by hot-wire chemical vapor deposition. Thin Solid Films (2014). doi:10.1016/j.tsf.2014.03.030

    Google Scholar 

  10. Z. Xia, S. Huang, Structure and property of magnetron sputtered ternary cobalt–nickel silicide films. Microelectron. Eng. 87, 1828 (2010)

    Article  Google Scholar 

  11. P.L. Tam, Y. Cao, U. Jelvestam, L. Nyborg, Corrosion properties of thermally annealed and co-sputtered nickel silicide thin films. Surf. Coat. Techol. 206, 1160 (2011)

    Article  Google Scholar 

  12. S. Harmand, J. Pellé, S. Poncet, I.V. Shevchuk, Review of fluid flow and convective heat transfer within rotating disk cavities with impinging jet. Int. J. Therm. Sci. 67, 1 (2013)

    Article  Google Scholar 

  13. D.S. Rimai, R. Anne, R.C. Bowen, The fabrication of thin-film thermocouples for determining the temperature and thermal conductivity within a flexible material. Rev. Sci. Instrum. 64, 1601 (1993)

    Article  Google Scholar 

  14. PCPDFWIN card number: 00-004-0850 (Version 2.1, Copyright 2000)

  15. PCPDFWIN card number: 00-047-1049 (Version 2.1, Copyright 2000)

  16. A.G. Khachaturyan, Ordering in substitutional and interstitial solid solutions. Prog. Mater. Sci. 22, 1 (1978)

    Article  Google Scholar 

  17. E. Bruno, B. Ginatempo, E.S. Guiliano, A.V. Ruban, YuKh Vekilov, Fermi surfaces and electronic topological transitions in metallic solid solutions. Phys. Rep. 249, 353 (1994)

    Article  Google Scholar 

  18. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics Inc., Minnesota, 1995)

    Google Scholar 

  19. J.F. Watts, J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES, 2nd edn. (Wiley, Chichester, 2003)

    Book  Google Scholar 

  20. M. Maniruzzaman, M.A. Rahman, K. Jeong, H. Nam, J. Lee, ITO free MoO3/Au/MoO3 structures using Al2O3 as protective barrier between MoO3 and PEDOT:PSS in organic solar cells. Renew. Energy 71, 193 (2014)

    Article  Google Scholar 

  21. Y. Oh, J. Mun, J. Kim, Effects of alloying elements on microstructure and protective properties of Al2O3 coatings formed on aluminum alloy substrates by plasma electrolysis. Surf. Coat. Techol. 204, 141 (2009)

    Article  Google Scholar 

  22. J. Xu, T. Shao, R. Zhu, Study of SiNx films used as protective layer on Ni film flow sensors. Surf. Coat. Techol. 253, 38 (2014)

    Article  Google Scholar 

  23. S. Oh, S. Ryu, Y. Kim, Y. Kim, M. Kim, D. Kim, High-temperature oxidation behavior of SiO2 protective layer deposited on IN738LC superalloy by combustion CVD (CCVD). Appl. Surf. Sci. 256, 124 (2009)

    Article  Google Scholar 

  24. G.N. Parsons, S.E. Atanasov, E.C. Dandley, C.K. Devine, B. Gong, J.S. Jur, K. Lee, C.J. Oldham, Q. Peng, J.C. Spagnola, P.S. Williams, Mechanisms and reactions during atomic layer deposition on polymers. Coord. Chem. Rev. 257, 3323 (2013)

    Article  Google Scholar 

  25. F.H.P.M. Habraken, A.E.T. Kuiper, Silicon nitride and oxynitride films. Mater. Sci. Eng. R Rep. 12, 123 (1994)

    Article  Google Scholar 

  26. Y. Liu, I.K. Lin, X. Zhang, Mechanical properties of sputtered silicon oxynitride films by nanoindentation. Mater. Sci. Eng. A 489, 294 (2008)

    Article  Google Scholar 

  27. W. Ding, L. Li, L. Zhang, D. Ju, S. Peng, W. Chai, An XPS study on the chemical bond structure at the interface between SiOxNy and N doped PET. J. Chem. Phys. 138, 104706 (2013)

    Article  Google Scholar 

  28. M. Hillert, S. Jonsson, B. Sundman, Thermodynamic calculation of the Si–N–O system, Z. MetaIlkd 83, 648 (1992)

    Google Scholar 

  29. I. Brynjulfsen, A. Bakken, M. Tangstad, L. Arnberg, Influence of oxidation on the wetting behavior of liquid silicon on Si3N4-coated substrates. J. Cryst. Growth 312, 2404 (2010)

    Article  Google Scholar 

  30. T.B. Massalski, H. Okamoto, Binary Alloy Phase Diagrams (ASM International, Ohio, 1990)

    Google Scholar 

  31. P. Villars, L.D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd edn. (ASM International, Ohio, 1991)

    Google Scholar 

  32. W. Ding, J. Xu, W. Lu, X. Deng, C. Dong, The effect of N2 flow rate on discharge characteristics of microwave electron cyclotron resonance plasma. Phys. Plasmas 16, 053502 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51472039, 51102030), Project of Education Department of Liaoning Province, China (No. L2013184), Natural Science Foundation of Liaoning Province, China (No. 201202024), Science and technology projects of Liaoning Province, China (No. 2012220007), Dalian Science and Technology Plan Project, China (No. 2012A12GX017), and Project of Open Research Foundation of State Key Laboratory of Advanced Technology for Float Glass (No. KF1301-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanyu Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Liu, J., Cui, Y. et al. The oxidation process of NiSix film at high temperature in air and the antioxidant effect of SiOxNy/NiSix film. J Mater Sci: Mater Electron 26, 3291–3298 (2015). https://doi.org/10.1007/s10854-015-2830-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2830-9

Keywords

Navigation