Skip to main content
Log in

Sol–gel synthesis of ZnO–SnO2 nanocomposites and their morphological, structural and optical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work ZnO/SnO2 nanocomposites have been synthesized by sol–gel method. Different samples were prepared by annealing the precipitate at 600 and 750 °C. The structural and morphological studies of ZnO/SnO2 nanocomposites were carried out by XRD, SEM and EDX. Optical properties were studied by UV–Vis and photoluminescence spectroscopy. The increase in the size of the ZnO/SnO2 nanocomposites with the presence of Zn2SnO4 at the higher temperature is observed. The optical band gap of ZnO/SnO2 nanocomposites decreases with the increase in the annealing temperature. The study reveals that the findings will be helpful in the band gap engineering of the ZnO/SnO2 nanocomposites for novel applications. In order to exploit these distinctive properties of ZnO/SnO2 nanocomposites for the realization of nanoscale devices, the effect of temperature on the morphology and optical properties of ZnO/SnO2 nanocomposites were studied. ZnO/SnO2 nanocomposites found potential applications in optoelectronics, photocatalysis, gas sensor and solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Sohila, R. Ramesh, S. Ramya, S. Ponnusamy, C. Muthamizhchelvan, J. Mater. Sci. Mater. Electron. 24, 4807–4811 (2013)

    Article  Google Scholar 

  2. K. Vijayalakshmi, K. Karthick, J. Mater. Sci. Mater. Electron. 25, 832–836 (2014)

    Article  Google Scholar 

  3. Z.Q. Liu, L.X. Ding, Z.L. Wang, Y.C. Mao, S.L. Xie, Y.M. Zhang, G.R. Lia, Y.X. Tong, CrystEngComm 14, 2289 (2012)

    Article  Google Scholar 

  4. K. Asokan, J.Y. Park, S.W. Choi, S.S. Kim, Nanoscale Res. Lett. 5, 747–752 (2010)

    Article  Google Scholar 

  5. H. Yang, S. Nie, J. Optoelectron. Adv. Mater. 10(1), 197–200 (2008)

    Google Scholar 

  6. O.A. Fouad, G. Glaspell, M.S. El Shall, Top. Catal. 47, 84–96 (2008)

    Article  Google Scholar 

  7. W.H. Zhang, W.D. Zhang, Sens. Actuators B 134, 403–408 (2008)

    Article  Google Scholar 

  8. M. Zhang, G. Sheng, J. Fu, T. An, X. Wang, X. Hu, Mater. Lett. 59, 3641–3644 (2005)

    Article  Google Scholar 

  9. H.A. Khorami, M.K. Rad, M.R. Vaezi, Appl. Surf. Sci. 257, 7988–7992 (2011)

    Article  Google Scholar 

  10. R. Ali, W.A.W. Abu Bakar, S.S. Mislan, M.A. Sharifuddin, Trans. C Chem. Chem. Eng. 17(2), 124–130 (2010)

    Google Scholar 

  11. M.T. Uddin, Y. Nicolas, C. Oliver, T. Toupance, L. Servant, M.M. Mullaer, H.J. Kleebe, J. Ziegler, W. Jaegermann, Inorg. Chem. 51(14), 7764–7773 (2012)

    Article  Google Scholar 

  12. M. Davis, W.M. Hikal, C. Gumeci, L.J. Hope-Weeks, Catal. Sci. Technol. 2, 922–924 (2012)

    Article  Google Scholar 

  13. X. Song, Z. Wang, Y. Liu, C. Wang, L. Li, Nanotechnology 20, 075501 (2009)

    Article  Google Scholar 

  14. X. Jia, H. Fan, L. Qin, C. Yang, J. Dispers. Sci. Technol. 31(10), 1405–1408 (2010)

    Article  Google Scholar 

  15. C. Liangyuan, B. Shouli, Z. Guojun, L. Dianqing, C. Aifan, C.C. Liu, Sens. Actuators B Chem. 134(2), 360–366 (2008)

    Article  Google Scholar 

  16. M. Ahmad, S. Yingying, H. Sun, W. Shen, J. Zhua, J. Solid State Chem. 196, 326–331 (2012)

    Article  Google Scholar 

  17. R. Dharmadasa, K.G.U. Wijayantha, A.A. Tahir, J. Electroanal. Chem. 646, 124–132 (2010)

    Article  Google Scholar 

  18. M.R. Nishantha, V.P.S. Perera, Proceedings of the technical sessions, Institute of Physics-Sri Lanka, 26, 61–65 (2010)

  19. A. Hamrouni, H. Lachheb, A. Houas, Mater. Sci. Eng. B 178(20), 1371–1379 (2013)

    Article  Google Scholar 

  20. H. Kammler, L. Madler, S.E. Pratsinis, Chem. Eng. Technol. 24, 6 (2001)

    Article  Google Scholar 

  21. Z.W. Zhao, in PhD thesis on “The liquid-phase synthesis and electrochemical application of novel inorganic nanocomposites” Institute for Superconducting and Electronic Materials, University of Wollongong, Australia (2008)

  22. O. Lupan, T. Pauporte, L. Chow, B. Viana, F. Pelle, L.K. Ono, B.R. Cuenya, H. Heinrich, Appl. Surf. Sci. 256, 1895–1907 (2010)

    Article  Google Scholar 

  23. K.G. Ewsuk, D.T. Ellerby, C.B. DiAntonio, J. Am. Ceram. Soc. 89, 6 (2006)

    Article  Google Scholar 

  24. Y.J. Chiang, C.C. Lin, Powder Technol. 246, 137–143 (2013)

    Article  Google Scholar 

  25. V. Kuzhalosai, B. Subash, A. Senthilraja, P. Dhatshanamurthi, M. Shanthi, Spectrochim. Acta A Mol. Biomol. Spectrosc. 115, 876–882 (2013)

    Article  Google Scholar 

  26. A. Hamrounia, N. Moussaa, F. Parrinob, A.D. Paolab, A. Houasa, L. Palmisano, J. Mol. Catal. A Chem. 390, 133–141 (2014)

    Article  Google Scholar 

  27. S. Zhenya, D. Yundi, Z. Weiying, J. Nanomater. 2008, 286069–286074 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by Science and Engineering Research Board, Department of Science & Technology (DST), Govt. of India (Grant No. SERB/F/2139/2013-14). We also thank Dr. Ruchita Pal, Advanced Instrumentation Research Facility (AIRF), Jawaharlal Nehru University, New Delhi for providing SEM/EDX facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Nigam, R., Kundu, V. et al. Sol–gel synthesis of ZnO–SnO2 nanocomposites and their morphological, structural and optical properties. J Mater Sci: Mater Electron 26, 3268–3274 (2015). https://doi.org/10.1007/s10854-015-2826-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2826-5

Keywords

Navigation