Skip to main content

Advertisement

Log in

Effect of electric field on dielectric properties of antiferroelectric ceramic/polymer composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Antiferroelectric ceramic/polymer composites can be used as a base material in the future application of the tunable photonic crystals even high strain actuators, shock-activated energy transducer and high-density capacitor for their easy fabrication, good flexibility, precise control of the process parameters and good dielectric tenability affected by electric field. The adjustable dielectric effect in the antiferroelectric ceramic/polymer composites are experimentally studied with specific interest in the dependence on the inducing electric field up to 100 V/mm. The particulate composite consisting 20 vol% of polystyrene (PS), 80 vol% of lead barium lanthanum zirconium tin titanate (PBLZST) is fabricated by the means of solution mixing and hot pressing in lab. Scanning electron microscopy was used to investigate the morphology of the composites and the particle distribution, which shows that the nano carbon powders evenly dispersed in composite materials. It is observed that the addition of coupling agent and nano carbon powders influence the dielectric properties, such as the value of the tunability rate of dielectric permittivity and loss tangent. This is partly attributed to coupling agent improve two phase separation and enhanced the effect of ceramic phase in composites, and partly attributed to carbon powders which create electric paths between PBLZST Particles in composite material, which together make more electric field applied to ceramic phase and influence the response of dielectric permittivity controlled by electric field. As a result, the best electric field value to adjust the dielectric permittivity (ε) is 100 V/mm and maximum tunability rate was 49 %, with coupling agent at 10 wt% and nano carbon powders at 1 wt% in composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.U. Adikary, Compos. Sci. Technol. 62, 2161–2167 (2002)

    Article  Google Scholar 

  2. Y. Bai, Z.Y. Cheng, Q.M. Zhang, Appl. Phys. Lett. 76, 3804–3806 (2000)

    Article  Google Scholar 

  3. S.K. Bhattacharya, R.R. Tummala, Microelectron. J. 32, 11–19 (2001)

    Article  Google Scholar 

  4. Z.M. Dang, Y.H. Lin, C.W. Nan, Adv. Mater. 15, 1625–1629 (2003)

    Article  Google Scholar 

  5. Z.M. Dang, L.Z. Fan, C.W. Nan, Mater. Sci. Eng. B 103, 140–144 (2003)

    Article  Google Scholar 

  6. K. Dong Hau, C. Chie Chih, S. Yeu, Mater. Chem. Phys. 85, 201–206 (2004)

    Article  Google Scholar 

  7. A. Figotin, Y.A. Godin, Phys. Rev. B 57, 2841–2848 (1998)

    Article  Google Scholar 

  8. T. Joseph, S. Uma, J. Philip, M.T. Sebastian, J. Mater. Sci. Mater. Electron. 23, 1243–1254 (2012)

    Article  Google Scholar 

  9. A.Z. Khokhar, R.M.D.L. Rue, K. Ren, Z.Y. Li, J. Opt. A Pure Appl. 9, 446–450 (2007)

    Article  Google Scholar 

  10. K.H. Lam, H.L.W. Chan, Microelectron. Eng. 66, 792–797 (2003)

    Article  Google Scholar 

  11. B. Li, J. Zhou, L.T. Li, Appl. Phys. Lett. 83, 4704–4706 (2003)

    Article  Google Scholar 

  12. K. Lichtenecker, Phys. Z. 25, 225 (1994)

    Google Scholar 

  13. R.H. Lyddane, R.G. Sachs, E. Tellers, Phys. Rev. 59, 673–676 (1941)

    Article  Google Scholar 

  14. B. Ma, R. Zuo, J. Yu, Y. Ran, H.W. Wang, L.W. Chan, J. Mater. Sci. Mater. Electron. 22, 1697–1702 (2011)

    Article  Google Scholar 

  15. Y. Rao, S. Ogitani, C.P. Wong, J. Appl. Polym. Sci. 83, 1084–1090 (2002)

    Article  Google Scholar 

  16. Y. Rao, A. Takahashi, C.P. Wong, Compos. A 34, 1113–1116 (2003)

    Article  Google Scholar 

  17. R.E. Service, Science 1997, 275 (1878)

    Google Scholar 

  18. X.X. Wang, K.H. Lam, X.G. Tang, H.L.W. Chan, Solid State Commun. 130, 695–699 (2004)

    Article  Google Scholar 

  19. Q. Wang, S. Jiang, Y. Zhang, G. Zhang, L. Xiong, J. Mater. Sci. Mater. Electron. 22, 849–853 (2011)

    Article  Google Scholar 

  20. C.K. Wong, F.G. Shin, J. Mater. Sci. 41, 229–249 (2006)

    Article  Google Scholar 

  21. P. Yang, A.P. David, J. Appl. Phys. 71, 1361–1367 (1992)

    Article  Google Scholar 

  22. H. Yang, H. Wang, F. Xiang, X. Yao, J. Electroceram. 22, 221–226 (2009)

    Article  Google Scholar 

  23. Q.M. Zhang, H.F. Li, M. Poh, F. Xia, Z.Y. Cheng, H.S. Xu, C. Huang, Nature 419, 284 (2002)

    Article  Google Scholar 

  24. Y. Zhang, E. Wang, H. Li, Y. Cai, J. Zhang, J. Mater. Sci. Mater. Electron. 26, 37–41 (2015)

    Article  Google Scholar 

  25. J. Zhou, C.Q. Sun, K. Pita, Appl. Phys. Lett. 78, 661–663 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

The present study was supported by “the Fundamental Research Funds for the Central Universities” (2013ZZGH014), National Science and Technology Support Program (2012BA113B00), National Nature Science Foundation of China (51102102, 61378076). We acknowledge Analytical and Testing Center of Huazhong University of Science and Technology for characterizations of our samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yike Zeng or Guangzu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, C., Jiang, S., Yu, Y. et al. Effect of electric field on dielectric properties of antiferroelectric ceramic/polymer composites. J Mater Sci: Mater Electron 26, 3236–3242 (2015). https://doi.org/10.1007/s10854-015-2822-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2822-9

Keywords

Navigation