Experimental and numerical analyses of laser remelted Sn–0.7 wt%Cu solder surfaces

  • Bismarck Luiz Silva
  • José Eduardo SpinelliEmail author
  • Manuel V. Canté
  • Felipe Bertelli
  • Noé Cheung
  • Rudimar Riva
  • Amauri Garcia


Numerous studies on the effects of solidification thermal parameters, microstructure and reliability of Sn–Cu solder alloys can be found in the literature, however only a very limited number of investigations deal with the application of laser surface remelting (LSR) in soldering processes. One of the key advantages of the LSR rapid solidification conditions relies on the reduction in size and the more homogeneous distribution of intermetallic particles. This study aims to analyze the effect of LSR process parameters on microstructural changes and hardness evolution in the remelted region of a Sn–0.7 wt%Cu alloy. Optical and SEM microstructures were used for determination of geometrical and dimensional aspects of the remelted pool profile such as depth (d) and width (w) as a function of the laser beam speed (Vb). Both dimensions are shown to vary linearly with Vb. Hardness varied noticeably with Vb (from 11.5 to 19.5 HV for Vb varying in the range 2.4–9.0 m/min) caused by the fineness of the eutectic mixture and the corresponding more homogeneous distribution of intermetallic Cu6Sn5 particles. The theoretical predictions provided by a heat transfer numerical model are shown to represent the dimensions of the laser-remelted Sn–0.7 wt%Cu alloy pool. A growth law is proposed relating the microstructural interphase spacing to the cooling rate, encompassing both directional solidification and LSR.


Solder Joint Solder Alloy Marangoni Convection Directionally Solidify Solidification Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the financial support provided by FAPESP (São Paulo Research Foundation: Grants 2013/13030-5 and 2012/16328-2) and CNPq (The Brazilian Research Council).


  1. 1.
    K. Suganuma, S. Kim, K. Kim, JOM–J. Miner. Met. Mater. Soc. 61, 64 (2009)CrossRefGoogle Scholar
  2. 2.
    Y. Gao, C. Cheng, J. Zhao, L. Wang, X. Li, Trans. Nonferrous Met. Soc. China 22, 977 (2012)CrossRefGoogle Scholar
  3. 3.
    E. Çadırlı, U. Böyük, S. Engin, H. Kaya, N. Maraslı, A. Ülgen, J. Alloys Compd. 486, 199 (2009)CrossRefGoogle Scholar
  4. 4.
    K. Nogita, Intermetallics 18, 145 (2010)CrossRefGoogle Scholar
  5. 5.
    H. Nishikawa, N. Iwata, J. Mater. Process. Technol. 215, 6 (2015)CrossRefGoogle Scholar
  6. 6.
    Q.Y. Pan, X. Lin, W.D. Huang, Y.H. Zhou, G.L. Zhang, Mater. Res. Bull. 33, 1621 (1998)CrossRefGoogle Scholar
  7. 7.
    M.S.F. Lima, R. Riva, M.G. Destro, A.M.E. Santo, R.A. Silva Jr, S.M. Guimaraes, Opt. Laser Technol. 41, 159 (2009)CrossRefGoogle Scholar
  8. 8.
    J. Muonio, R. Stadem, Circuits Assem. 19, 28 (2008)Google Scholar
  9. 9.
    N. Cheung, M.A. Pinto, M.C.F. Ierardi, A. Garcia, Mater. Res. 7, 349 (2004)CrossRefGoogle Scholar
  10. 10.
    W.R. Osorio, N. Cheung, J.E. Spinelli, K.S. Cruz, A. Garcia, Appl. Surf. Sci. 254, 2763 (2008)CrossRefGoogle Scholar
  11. 11.
    F. Bertelli, E.S. Meza, P.R. Goulart, N. Cheung, R. Riva, A. Garcia, Opt. Laser Eng. 49, 490 (2011)CrossRefGoogle Scholar
  12. 12.
    N. Cheung, M.A. Pinto, M.C.F. Ierardi, A. Garcia, Surf. Eng. 21, 473 (2005)CrossRefGoogle Scholar
  13. 13.
    T. Hurtony, A. Bonyár, P. Gordon, G. Harsány, Microelectron. Reliab. 52, 1138 (2012)CrossRefGoogle Scholar
  14. 14.
    B. Arfaei, N. Kim, E.J. Cotts, J. Electron. Mater. 41, 362 (2012)CrossRefGoogle Scholar
  15. 15.
    F.X. Che, W.H. Zhu, E.S.W. Poh, X.W. Zhang, X.R. Zhang, J. Alloys Compd. 507, 215 (2010)CrossRefGoogle Scholar
  16. 16.
    W.R. Osório, J.E. Spinelli, C.R.M. Afonso, L.C. Peixoto, A. Garcia, Electrochim. Acta 56, 8891 (2011)CrossRefGoogle Scholar
  17. 17.
    A.P. Silva, J.E. Spinelli, N. Mangelinck-Noël, A. Garcia, Mater. Des. 31, 4584 (2010)CrossRefGoogle Scholar
  18. 18.
    I.T.L. Moura, C.L.M. Silva, N. Cheung, P.R. Goulart, A. Garcia, J.E. Spinelli, Mater. Chem. Phys. 132, 203 (2012)CrossRefGoogle Scholar
  19. 19.
    M. Samaïa, T. Loulou, Numer. Heat Transf. B Fundam. 56, 75 (2009)CrossRefGoogle Scholar
  20. 20.
    N. Cheung, I.L. Ferreira, M.M. Pariona, J.M.V. Quaresma, A. Garcia, Mater. Des. 30, 3592 (2009)CrossRefGoogle Scholar
  21. 21.
    T. Chellaih, G. Kumar, K.N. Prabhu, Mater. Des. 28, 1006 (2007)CrossRefGoogle Scholar
  22. 22.
    I. Kaban, S. Mhiaoui, W. Hoyer, J.-G. Gasser, J. Phys, Condens. Matter 17, 7867 (2005)CrossRefGoogle Scholar
  23. 23.
    G. Cisneros, J.S. Helman, C.N.J. Wagner, Phys. Rev. B 25, 4248 (1982)CrossRefGoogle Scholar
  24. 24.
    F. Meydaneri, B. Saatçi, M. Özdemir, Fluid Ph. Equilib. 298, 97 (2010)CrossRefGoogle Scholar
  25. 25.
    Y. Kaygısız, Y. Ocak, S. Aksöz, N. Maraşlı, K. Keşlioğlu, E. Çadırlı, H. Kaya, Chem. Phys. Lett. 484, 219 (2010)CrossRefGoogle Scholar
  26. 26.
    M. Zimmermann, M. Carrard, W. Kurz, Acta Metall. 37, 3305 (1989)CrossRefGoogle Scholar
  27. 27.
    J.M. Drezet, S. Pellerin, C. Bezençon, S. Mokadem, J. Phys. IV Fr. 120, 299 (2004)Google Scholar
  28. 28.
    K.A. Jackson, J.D. Hunt, Trans. Metall. Soc. AIME 236, 1129 (1966)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Bismarck Luiz Silva
    • 1
  • José Eduardo Spinelli
    • 1
    Email author
  • Manuel V. Canté
    • 2
  • Felipe Bertelli
    • 2
  • Noé Cheung
    • 2
  • Rudimar Riva
    • 3
  • Amauri Garcia
    • 2
  1. 1.Department of Materials EngineeringFederal University of São Carlos, UFSCarSão CarlosBrazil
  2. 2.Department of Manufacturing and Materials EngineeringUniversity of Campinas, UNICAMPCampinasBrazil
  3. 3.Institute for Advanced StudiesGeneral Command for Aerospace TechnologySão José Dos CamposBrazil

Personalised recommendations