Skip to main content
Log in

Grain alignment and its relationship with superconductivity and thermal transport of Ni-substituted Bi-2212 textured rods fabricated at two different growth rates

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The microstructure, grain alignment, superconducting and thermal transport properties of Ni-substituted Bi-2212 rods grown at two different speeds (15 and 30 mm h−1) through the Laser Floating Zone method, have been evaluated. Significant variations in grain size, grain alignment, electrical and thermoelectric power properties have been observed for the rods depending on the growth and substitution rates. The highest aligned structure was obtained on unsubstituted rods grown at 15 mm h−1. Both increased substitution and growth rates degraded the grain alignment. The presence of Ni-based secondary phases showed that Ni is not totally incorporated into the crystal structure, which, in turn, caused a decrease on the average grain size of the rods. With increasing Ni concentration, peak values of thermoelectric power of the rods, which lie between 3.8 and 6.4 μVK−1, monotonically decreased while thermal conductivity values did not show any systematic change. The activation energy of flux motion, U o , was calculated from the field dependent resistivity–temperature curves in a range of 0–8 T. Superconducting transition temperatures, T onsetc and T offsetc , and activation energy, U o , were found to decrease with increasing Ni contents and applied magnetic field. It has been estimated from the magnetic field dependence of activation energy of the samples that plastic creep of the collective vortices is dominant in the rods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y.H. Shi, J.H. Durrell, A.R. Dennis, N. Hari Babu, C.E. Mancini, D.A. Cardwell, Supercond. Sci. Technol. 25, 045006 (2012)

    Article  Google Scholar 

  2. J.R. Kirtley, Rep. Prog. Phys. 73, 126501 (2010)

    Article  Google Scholar 

  3. T. Shen, J. Jiang, F. Kametani, U.P. Trociewitz, D.C. Larbalestier, J. Schwartz, E.E. Hellstrom, Supercond. Sci. Technol. 23, 025009 (2010)

    Article  Google Scholar 

  4. S. Vinu, P.M. Sarun, R. Shabna, U. Syamaprasad, J. Appl. Phys. 106, 063920 (2009)

    Article  Google Scholar 

  5. D.F. Zhou, M. Izumi, M. Miki, B. Felder, T. Ida, M. Kitano, Supercond. Sci. Technol. 25, 103001 (2012)

    Article  Google Scholar 

  6. P.V. Parimi, S.B. Vummethala, IEEE Trans. Appl. Supercond. 9, 4624–4627 (1999)

    Article  Google Scholar 

  7. T.D. Aksenova, P.V. Bratukhin, S.V. Shavkin, V.L. Melnikov, E.V. Antipova, N.E. Khlebova, A.K. Shikov, Phys. C 205, 271–279 (1993)

    Article  Google Scholar 

  8. M. Mora, V. Lennikov, H. Amaveda, L.A. Angurel, G.F. de la Fuente, M.T. Bona, C. Mayoral, J.M. Andres, J. Sanchez-Herencia, IEEE Trans. Appl. Supercond. 19, 3041–3044 (2009)

    Article  Google Scholar 

  9. M.F. Carrasco, V.S. Amaral, R.F. Silva, F.M. Costa, Appl. Surf. Sci. 257, 5283–5286 (2011)

    Article  Google Scholar 

  10. M. Mora, F. Gimeno, L.A. Angurel, G.F. de la Fuente, Supercond. Sci. Technol. 17, 1133–1138 (2004)

    Article  Google Scholar 

  11. M.R.B. Andreeta, E.R.M. Andreeta, A.C. Hernandes, R.S. Feigelson, J. Cryst. Growth 234, 759–761 (2002)

    Article  Google Scholar 

  12. L. Garcia-Tabares, J. Calero, P. Abramian, F. Toral, L.A. Angurel, J.C. Diez, R. Burriel, E. Natividad, R. Iturbe, J. Etxeandia, IEEE Trans. Appl. Supercon. 11, 2543–2546 (2001)

    Article  Google Scholar 

  13. F. Lera, L.A. Angurel, J.A. Rojo, M. Mora, S. Recuero, M.P. Arroyo, N. Andres, Supercond. Sci. Technol. 18, 1489–1495 (2005)

    Article  Google Scholar 

  14. L.A. Angurel, J.C. Díez, G.F. de la Fuente, F. Gimeno, F. Lera, C. López-Gascón, E. Martínez, M. Mora, R. Navarro, A. Sotelo, N. Andrés, S. Recuero, M.P. Arroyo, Phys. Stat. Solid A 203, 2931–2937 (2006)

    Article  Google Scholar 

  15. R. Wesche, P. Bruzzone, S. March, M. Vogel, H. Ehmler, P. Smeibidl, Phys. Procedia 36, 927–930 (2012)

    Article  Google Scholar 

  16. A. Ballarino, Phys. C 468, 2143–2148 (2008)

    Article  Google Scholar 

  17. M. Schwarz, K.P. Weiss, R. Heller, W.H. Fietz, Fusion Eng. Des. 84, 1748–1750 (2009)

    Article  Google Scholar 

  18. G.F. de la Fuente, J.C. Diez, L.A. Angurel, J.I. Pena, A. Sotelo, R. Navarro, Adv. Mater. 7, 853–856 (1995)

    Article  Google Scholar 

  19. M.F. Carrasco, R.A. Silva, N.J.O. Silva, R.F. Silva, J.M. Vieira, F.M. Costa, Appl. Surf. Sci. 255, 5503–5506 (2009)

    Article  Google Scholar 

  20. M.F. Carrasco, V.S. Amaral, R.F. Silva, J.M. Vieira, F.M. Costa, Appl. Surf. Sci. 252, 4957–4963 (2006)

    Article  Google Scholar 

  21. B. Ozkurt, M.A. Madre, A. Sotelo, M.E. Yakinci, B. Ozcelik, J. Supercond. Nov. Magn. 25, 799–804 (2012)

    Article  Google Scholar 

  22. A. Sotelo, Sh Rasekh, M.A. Madre, J.C. Diez, J. Supercond. Nov. Magn. 24, 19–25 (2011)

    Article  Google Scholar 

  23. A. Sotelo, M. Mora, M.A. Madre, J.C. Diez, L.A. Angurel, G.F. de la Fuente, J. Eur. Ceram. Soc. 25, 2947–2950 (2005)

    Article  Google Scholar 

  24. A. Sotelo, M.A. Madre, J.C. Diez, Sh Rasekh, L.A. Angurel, E. Martinez, Supercond. Sci. Technol. 22, 034012 (2009)

    Article  Google Scholar 

  25. V.V. Lennikov, P.E. Kazin, Y.D. Tretyakov, G.F. de la Fuente, Z. Anorg. Allg. Chem. 630, 2337–2342 (2004)

    Article  Google Scholar 

  26. M. Mora, L.A. Angurel, J.C. Diez, R.J. Drost, P.H. Kes, Phys. C 372–376, 1179–1182 (2002)

    Article  Google Scholar 

  27. L.A. Angurel, G.F. de la Fuente, A. Badia, A. Larrea, J.C. Diez, J.I. Pena, E. Martinez, R. Navarro, in Studies of high temperature superconductors, vol. 3, ed. by A.V. Narlikar (Nova Science Publishers, New York, 1997), pp. 1–31

    Google Scholar 

  28. J. Jaroszynski, F. Hunte, L. Balicas, Y. Jo, I. Raičević, A. Gurevich, D.C. Larbalestier, F.F. Balakirev, L. Fang, P. Cheng, Y. Jia, H.H. Wen, Phys. Rev. B 78, 174523 (2008)

    Article  Google Scholar 

  29. A. Sidorenko, V. Zdravkov, V. Ryazanov, S. Horn, S. Klimm, R. Tidecks, A. Wixforth, Th Koch, Th Schimmel, Philos. Mag. 85, 1783–1790 (2005)

    Article  Google Scholar 

  30. X.L. Wang, A.H. Li, S. Yu, S. Ooi, K. Hirata, C.T. Lin, E.W. Collings, M.D. Sumption, M. Bhatia, S.Y. Ding, S.X. Dou, J. Appl. Phys. 97, 10B114 (2005)

    Google Scholar 

  31. T.T.M. Palstra, B. Batlogg, R.B. van Dover, L.F. Schneemeyer, J.V. Waszchak, Phys. Rev. B 41, 6621–6632 (1990)

    Article  Google Scholar 

  32. D. Sharma, R. Kumar, V.P.S. Awana, Solid State Commun. 152, 941–946 (2012)

    Article  Google Scholar 

  33. Y. Yeshurn, A.P. Malozemoff, Phys. Rev. Lett. 60, 2202–2205 (1988)

    Article  Google Scholar 

  34. N.Y. Fogel, V.G. Cherkasova, O.A. Koretzkaya, A.S. Sidorenko, Phys. Rev. B 55, 85–88 (1997)

    Article  Google Scholar 

  35. O. Brunner, L. Antognazza, J.M. Triskone, L. Mieville, O. Fischer, Phys. Rev. Lett. 67, 1354–1357 (1991)

    Article  Google Scholar 

  36. H.H. Wen, AFTh Hoekstra, R. Griessen, S.L. Yan, L. Fang, M.S. Si, Phys. Rev. Lett. 79, 1559–1562 (1997)

    Article  Google Scholar 

  37. P.W. Anderson, Y.B. Kim, Rev. Mod. Phys. 36, 39–43 (1964)

    Article  Google Scholar 

  38. Y. Abulafia, A. Shaulov, Y. Wolfus, R. Prozorov, L. Burlachkov, Y. Yeshurun, D. Majer, E. Zeldov, H. Wuhl, V.B. Geshkenbein, V.M. Vinokur, Phys. Rev. Lett. 77, 1596–1599 (1996)

    Article  Google Scholar 

  39. T. Naito, H. Fujishiro, J. Fujikami, IEEE Trans. Appl. Supercond. 21, 2828–2831 (2011)

    Article  Google Scholar 

  40. S. Castellazzi, M.R. Cimberle, C. Ferdeghini, E. Giannini, G. Grasso, D. Marre, M. Putti, A.S. Siri, Phys. C 273, 314–322 (1997)

    Article  Google Scholar 

  41. V. Plechacek, J. Hejtmanek, Phys. C 282–287, 2577–2578 (1997)

    Article  Google Scholar 

  42. V. Ashokan, B.D. Indu, Thin Solid Films 518, e28–e30 (2010)

    Article  Google Scholar 

  43. M.A. Aksan, O. Kizilaslan, E.N. Aksan, M.E. Yakinci, Phys. B 407, 2820–2824 (2012)

    Article  Google Scholar 

  44. T. Chakraborty, B. Gahtori, A. Soni, G.S. Okram, S.K. Agrawal, S.Y. Chen, Y.K. Kuo, M.A.H. Ahsan, A. Rao, Solid State Commun. 151, 1117–1121 (2011)

    Article  Google Scholar 

  45. A. Biju, U. Syamaprasad, A. Rao, J.G. Xu, K.M. Sivakumar, Y.K. Kuo, Phys. C 466, 69–75 (2007)

    Article  Google Scholar 

  46. P.F. Herrmann, C. Albrecht, J. Bock, C. Cottevieille, S. Elschned, W. Herkert, M.O. Lafod, H. Lauvray, A. Leriche, W. Nick, E. Preisler, H. Salzburger, J.M. Tourre, T. Verhaege, IEEE Trans. Appl. Supercond. 3, 876–888 (1993)

    Article  Google Scholar 

  47. E. Natividad, M. Castro, R. Burriel, L.A. Angurel, J.C. Diez, R. Navarro, Supercond. Sci. Technol. 15, 1022–1029 (2002)

    Article  Google Scholar 

  48. M. Matsukawa, F. Tatezaki, K. Noto, H. Fujishiro, K. Michishita, Y. Kubo, Cryogenics 34, 685–688 (1993)

    Article  Google Scholar 

  49. S. Nakamae, J. Schwartz, IEEE Trans. Appl. Supercond. 7, 1699–1702 (1997)

    Article  Google Scholar 

  50. K. Khrishana, N.P. Ong, Q. Li, G.D. Gu, N. Koshizuka, Science 277, 83–85 (1997)

    Article  Google Scholar 

  51. M.C. Sekhar, S.V. Suryanarayana, Phys. C 415, 209–219 (2004)

    Article  Google Scholar 

  52. L. Forro, J. Lukatela, B. Keszei, Solid State Commun. 73, 501–505 (1990)

    Article  Google Scholar 

  53. A.B. Kaiser, Phys. Rev. B 35, 4677–4681 (1987)

    Article  Google Scholar 

  54. M.A. Aksan, M.E. Yakinci, J Alloys Compd. 385, 33–43 (2004)

    Article  Google Scholar 

  55. N. Nagaosa, P.A. Lee, Phys. Rev. Lett. 64, 2450–2453 (1990)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under 2214 International Doctoral Research Fellowship Program (M. Ozabaci). A. Sotelo and M.A. Madre acknowledge DGA (Consolidated research group T12) for financial support. M. A. Madre acknowledges MINECO-FEDER (Project MAT2011-22719) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ozabaci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozabaci, M., Kizilaslan, O., Madre, M.A. et al. Grain alignment and its relationship with superconductivity and thermal transport of Ni-substituted Bi-2212 textured rods fabricated at two different growth rates. J Mater Sci: Mater Electron 26, 3090–3099 (2015). https://doi.org/10.1007/s10854-015-2801-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2801-1

Keywords

Navigation