Interface characteristics for graphene contact to n-type and p-type GaN observed by X-ray photoelectron spectroscopy

  • Chia-Lung Tsai
  • Yow-Jon Lin
  • Jian-Huang Lin


The interface characteristics of graphene/GaN samples using X-ray photoelectron spectroscopy (XPS) measurements are investigated. XPS makes it possible to extract a reliable barrier-height value. For graphene/n-type GaN (graphene/p-type GaN) samples, the Schottky barrier height is 0.85 (2.50) eV. To determine the Fermi-level pinning/unpinning at the graphene/GaN interfaces, an analysis is conducted according to the Schottky–Mott limit. It is shown that the Fermi energy level is unpinned and the barrier-height value is dependent on the work function of graphene. Investigation of graphene/GaN interfaces is important, and providing the other technique for surface potential control is possible.


Work Function MoS2 Graphene Film Schottky Barrier Height Fermi Energy Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the support of the Ministry of Science and Technology, Taiwan (Contract No. 103-2112-M-018-003-MY3) in the form of grants.


  1. 1.
    K.N. Parrish, D. Akinwande, Appl. Phys. Lett. 98, 183505 (2011)CrossRefGoogle Scholar
  2. 2.
    D. Dragoman, M. Dragoman, R. Plana, J. Appl. Phys. 108, 084316 (2010)CrossRefGoogle Scholar
  3. 3.
    C. Yim, N. McEvoy, G.S. Duesberg, Appl. Phys. Lett. 103, 193106 (2013)CrossRefGoogle Scholar
  4. 4.
    Y.J. Lin, J.J. Zeng, Appl. Phys. Lett. 102, 183120 (2013)CrossRefGoogle Scholar
  5. 5.
    J.J. Zeng, Y.J. Lin, Appl. Phys. Lett. 104, 233103 (2014)CrossRefGoogle Scholar
  6. 6.
    C.C. Chen, M. Aykol, C.C. Chang, A.F.J. Levi, S.B. Cronin, Nano Lett. 11, 1863 (2011)CrossRefGoogle Scholar
  7. 7.
    M. Mohammed, Z. Li, J. Cui, T. Chen, Nanoscale Res. Lett. 7, 302 (2012)CrossRefGoogle Scholar
  8. 8.
    J.H. Lin, J.J. Zeng, Y.J. Lin, Thin Solid Films 550, 582 (2014)CrossRefGoogle Scholar
  9. 9.
    J.J. Zeng, Y.J. Lin, Appl. Phys. Lett. 104, 133506 (2014)CrossRefGoogle Scholar
  10. 10.
    C.C. Chen, C.C. Chang, Z. Li, A.F.J. Levi, S.B. Cronin, Appl. Phys. Lett. 101, 223113 (2012)CrossRefGoogle Scholar
  11. 11.
    Y.F. Lin, W. Li, S.L. Li, Y. Xu, A. Aparecido-Ferreira, K. Komatsu, H. Sun, S. Nakaharaia, K. Tsukagoshi, Nanoscale 6, 795 (2014)CrossRefGoogle Scholar
  12. 12.
    H. Zhong, Z. Liu, L. Shi, G. Xu, Y. Fan, Z. Huang, J. Wang, G. Ren, K. Xu, Appl. Phys. Lett. 104, 212101 (2014)CrossRefGoogle Scholar
  13. 13.
    S. Tongay, M. Lemaitre, T. Schumann, K. Berke, B.R. Appleton, B. Gila, A.F. Hebard, Appl. Phys. Lett. 99, 102102 (2011)CrossRefGoogle Scholar
  14. 14.
    S. Kim, J.M. Lee, D.H. Lee, W.I. Park, Thin Solid Films 546, 246 (2013)CrossRefGoogle Scholar
  15. 15.
    H.W. Shiu, L.Y. Chang, K.H. Lee, H.Y. Chen, S. Gwo, C.H. Chen, Appl. Phys. Lett. 103, 081604 (2013)CrossRefGoogle Scholar
  16. 16.
    S. Tongay, M. Lemaiyre, X. Miao, B. Gila, B.R. Appleton, A.F. Hebard, Phys. Rev. X 2, 011002 (2012)Google Scholar
  17. 17.
    J.H. Lin, Y.J. Lin, H.C. Chang, Appl. Phys. A 118, 361 (2015)CrossRefGoogle Scholar
  18. 18.
    Y.J. Lin, J.J. Zeng, H.C. Chang, Appl. Phys. A 118, 353 (2015)CrossRefGoogle Scholar
  19. 19.
    J.J. Zeng, Y.J. Lin, Mater. Chem. Phys. 145, 250 (2014)CrossRefGoogle Scholar
  20. 20.
    Y.J. Lin, C.F. You, C.S. Lee, J. Appl. Phys. 99, 053706 (2006)CrossRefGoogle Scholar
  21. 21.
    Y.J. Lin, Appl. Phys. Lett. 86, 122109 (2005)CrossRefGoogle Scholar
  22. 22.
    Y.J. Lin, W.X. Lin, C.T. Lee, H.C. Chang, Jpn. J. Appl. Phys. 45, 2505 (2006)CrossRefGoogle Scholar
  23. 23.
    Y.J. Lin, C.T. Lee, Appl. Phys. Lett. 77, 3986 (2000)CrossRefGoogle Scholar
  24. 24.
    Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, S.S. Pei, Appl. Phys. Lett. 93, 113103 (2008)CrossRefGoogle Scholar
  25. 25.
    S.J. Chae, F. Güneş, K.K. Kim, E.S. Kim, G.H. Han, S.M. Kim, H.J. Shin, S.M. Yoon, J.Y. Choi, M.H. Park, C.W. Yang, D. Pribat, Y.H. Lee, Adv. Mater. 21, 2328 (2009)CrossRefGoogle Scholar
  26. 26.
    R. Zhang, Z.S. Wang, Z.D. Zhang, Z.G. Dai, L.L. Wang, H. Li, L. Zhou, Y.X. Shang, J. He, D.J. Fu, J.R. Liu, Appl. Phys. Lett. 102, 193102 (2013)CrossRefGoogle Scholar
  27. 27.
    Y. Wang, Z. Ni, T. Yu, Z.X. Shen, H. Wang, Y. Wu, W. Chen, A.T.S. Wee, J. Phys. Chem. C 112, 10637 (2008)CrossRefGoogle Scholar
  28. 28.
    Z. Luo, N.J. Pinto, Y. Davila, A.T. Charlie, Johnson. Appl. Phys. Lett. 100, 253108 (2012)CrossRefGoogle Scholar
  29. 29.
    J.R. Waldrop, R.W. Grant, Appl. Phys. Lett. 52, 1794 (1988)CrossRefGoogle Scholar
  30. 30.
    K.M. Tracy, P.J. Hartlieb, S. Einfeldt, F. Davis, E.H. Hurt, R.J. Nemanich, J. Appl. Phys. 94, 3939 (2003)CrossRefGoogle Scholar
  31. 31.
    V.M. Bermudez, J. Appl. Phys. 80, 1190 (1996)CrossRefGoogle Scholar
  32. 32.
    J.R. Waldrop, R.W. Grant, Appl. Phys. Lett. 68, 2879 (1996)CrossRefGoogle Scholar
  33. 33.
    H.B. Michaelson, J. Appl. Phys. 48, 4729 (1977)CrossRefGoogle Scholar
  34. 34.
    Y.J. Lin, J.H. Lin, Appl. Surf. Sci. 311, 224 (2014)CrossRefGoogle Scholar
  35. 35.
    Y.C. Lin, C.Y. Lin, P.W. Chiu, Appl. Phys. Lett. 96, 133110 (2010)CrossRefGoogle Scholar
  36. 36.
    C. Petridis, Y.H. Lin, K. Savva, G. Eda, E. Kymakis, T.D. Anthopoulos, E. Stratakis, Appl. Phys. Lett. 102, 093115 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Electronics and Optoelectronics Research LaboratoriesIndustrial Technology Research InstituteHsinchuTaiwan
  2. 2.Institute of PhotonicsNational Changhua University of EducationChanghuaTaiwan

Personalised recommendations