Skip to main content
Log in

Surface modification of sol–gel synthesized TiO2 photo-catalysts for the production of core/shell structured TiO2–SiO2 nano-composites with reduced photo-catalytic activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

TiO2 nanoparticles have been prepared by a facile and reproducible wet chemical approach based on the sol–gel method followed by calcination at various temperatures and times. X-ray diffraction and differential thermal analysis/thermo-gravimetric analysis techniques were used to evaluate phase compositions and transformations during calcination treatment. Then, the silica coating of synthesized TiO2 nanoparticles has been performed by means of a route based on the Stöber process to fabricate core/shell structured TiO2–SiO2 nano-composites with the aim to decline the high photo-catalytic activity of pure TiO2 under UV light irradiation, while simultaneously maintaining its UV-barrier ability. The photo-catalytic property was evidenced by the degradation of an aqueous solution of methylene blue in UV range. The elemental composition of core/shell structured TiO2–SiO2 nano-composites was verified by using energy dispersive X-ray (EDX) analysis, and in order to understand the atomic distributions, EDX elemental mapping has been demonstrated for optimum nano-composite sample. The chemical states of the atoms on the surface of synthesized TiO2 and in the coating layer of optimized nano-composite were examined by X-ray photoelectron spectroscopy analysis, and the presence of Si–O–Si and Ti–O–Si bands on the surface of nano-composite particles was further proved by it. In addition to the confirmation of coating of titania surface by silica layer with mean thickness of 4 nm via TEM image examination, the zeta-potential analyses also indicated that the silica sheath shifted the isoelectric point of synthesized titania toward that of a typical pure colloidal silica. Furthermore, the resultant optimum nano-composites have been characterized by BET, FTIR, FESEM and UV–Vis spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Dameris, Depletion of the ozone layer in the 21st century. Angew. Chem. Int. Ed. 49, 489–491 (2010)

    Article  Google Scholar 

  2. E. Vasili, Xh Doci, E. Petrela, I. Savo, E. Cano, B. Bezati, Environmental effects of ozone layer depletion on skin cancer. J. Environ. Prot. Ecol. 14, 731–743 (2013)

    Google Scholar 

  3. C. Decker, K. Zahouily, Photo-degradation and photo-oxidation of thermoset and UV-cured acrylate polymers. Polym. Degrad. Stab. 64, 293–304 (1999)

    Article  Google Scholar 

  4. A.L. Andradya, S.H. Hamidb, X. Huc, A. Torikai, Effects of increased solar ultraviolet radiation on materials. J. Photochem. Photobiol. B Biol. 46, 96–103 (1998)

    Article  Google Scholar 

  5. P. Singh, A. Nanda, Nanotechnology in cosmetics: a boon or bane? Toxiol. Environ. Chem. 94, 1467–1479 (2012)

    Article  Google Scholar 

  6. F.P. Gasparro, M. Mitchnick, J.F. Nash, A review of sunscreen safety and efficacy. Photochem. Photobiol. 68, 243–256 (1998)

    Article  Google Scholar 

  7. J. Glówczyk-Zubek, Cosmetic application of micro-fine titanium dioxide. J. Appl. Cosmetol. 22, 143–153 (2004)

    Google Scholar 

  8. H. Yang, S. Zhu, N. Pan, Studying the mechanisms of titanium dioxide as ultraviolet-blocking additive for films and fabrics by an improved scheme. J. Appl. Polym. Sci. 92, 3201–3210 (2004)

    Article  Google Scholar 

  9. S. Xiao, L. Liu, J. Lian, Solvo-thermal synthesis of nano-crystalline ZnO with excellent photo-catalytic performance. J. Mater. Sci. Mater. Electron. 25, 5518–5523 (2014)

    Article  Google Scholar 

  10. N.M. Zholobak, V.K. Ivanov, A.B. Shcherbakov, A.S. Shaporev, O.S. Polezhaeva, A.Y. Baranchikov, N.Y. Spivak, Y.D. Tretyakov, UV-shielding property, photo-catalytic activity and photo-cytotoxicity of ceria colloid solutions. J. Photochem. Photobiol. B 102, 32–38 (2011)

    Article  Google Scholar 

  11. X. Chen, S.S. Mao, Titanium dioxide nano-materials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007)

    Article  Google Scholar 

  12. A. Mills, S. Le Hunte, An overview of semiconductor photo-catalysis. J. Photochem. Photobiol. A 108, 1–35 (1997)

    Article  Google Scholar 

  13. N. Serpone, A. Salinaro, A. Emeline, Deleterious effects of sunscreen titanium dioxide nanoparticles on DNA: efforts to limit DNA damage by particle surface modification. Proc. SPIE Int. Soc. Opt. Eng. 4258, 86–98 (2001)

    Google Scholar 

  14. L. Cao, Z. Gao, S.L. Suib, T.N. Obee, S.O. Hay, J.D. Freihaut, Photo-catalytic oxidation of toluene on nano-scale TiO2 catalysts: studies of deactivation and regeneration. J. Catal. 196, 253–261 (2000)

    Article  Google Scholar 

  15. Y.-L. Lin, T.-J. Wang, Y. Jin, Surface characteristics of hydrous silica-coated TiO2 particles. Powder Technol. 123, 194–198 (2002)

    Article  Google Scholar 

  16. X. Feng, S. Zhang, X. Lou, Controlling silica coating thickness on TiO2 nano-particles for effective photodynamic therapy. Colloids Surf. B Biointerfaces 107, 220–226 (2013)

    Article  Google Scholar 

  17. R.G. Chaudhuri, S. Paria, Core/shell nano-particles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012)

    Article  Google Scholar 

  18. E. Ukaji, T. Furusawa, M. Sato, N. Suzuki, The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO2 particles as inorganic UV filter. Appl. Surf. Sci. 254, 563–569 (2007)

    Article  Google Scholar 

  19. O.K. Park, Y.S. Kang, Preparation and characterization of silica coated TiO2 nano-particle. Colloids Surf. A Physicochem. Eng. Asp. 257–258, 261–265 (2005)

    Article  Google Scholar 

  20. I.A. Siddiquey, T. Furusawa, M. Sato, K. Honda, N. Suzuki, Control of the photo-catalytic activity of TiO2 nanoparticles by silica coating with polydiethoxysiloxane. Dye Pigment 76, 754–759 (2008)

    Article  Google Scholar 

  21. J.P. Jolivet, Metal Oxide Chemistry and Synthesis (Wiley, Chichester, 2003)

    Google Scholar 

  22. D.P. Macwan, P.N. Dave, S. Chaturvedi, A review on nano-TiO2 sol–gel type syntheses and its applications. J. Mater. Sci. 46, 3669–3686 (2011)

    Article  Google Scholar 

  23. D. Dastan, P.U. Londhe, N.B. Chaure, Characterization of TiO2 nanoparticles prepared using different surfactants by sol–gel method. J. Mater. Sci. Mater. Electron. 25, 3473–3479 (2014)

    Article  Google Scholar 

  24. W. Stöber, A. Fink, E. Bohn, Controlled growth of mono-disperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968)

    Article  Google Scholar 

  25. L.M. Liz-Marzán, M. Giersig, P. Mulvaney, Synthesis of nanosized gold–silica core–shell particles. Langmuir 12, 4329–4335 (1996)

    Article  Google Scholar 

  26. M. Kari, M. Montazeri-Pour, M. Rajabi, V. Tizjang, S. Moghadas, Maximum SiO2 layer thickness by utilizing polyethylene glycol as the surfactant in synthesis of core/shell structured TiO2–SiO2 nano-composites. J. Mater. Sci. Mater. Electron. 25, 5560–5569 (2014)

    Article  Google Scholar 

  27. M. Montazeri-Pour, A. Ataie, Low temperature crystallization of barium ferrite nano-particles via co-precipitation method using di-ethylene glycol. Int. J. Mod. Phys. B 22, 3144–3152 (2008)

    Article  Google Scholar 

  28. Z. Liu, Z. Jian, J. Fang, X. Xu, X. Zhu, S. Wu, Low-temperature reverse micro-emulsion synthesis, characterization, and photo-catalytic performance of nano-crystalline titanium dioxide. Int. J. Photoenergy 2012, 1–8 (2012)

    Google Scholar 

  29. R.A. Aziz, I. Sopyan, Synthesis of TiO2–SiO2 powder and thin film photo-catalysts by sol–gel method. Indian J. Chem. 48, 951–957 (2009)

    Article  Google Scholar 

  30. M. Yoshinaka, K. Hirota, O. Yamaguchi, Formation and sintering of TiO2 (anatase) solid solution in the system TiO2–SiO2. J. Am. Ceram. Soc. 80, 2749–2753 (1997)

    Article  Google Scholar 

  31. M. Montazeri-Pour, N. Riahi-Noori, A. Mehdikhani, Synthesis of single-phase anatase TiO2 nano-particles by hydrothermal treatment with application potential for photo-anode electrodes of dye sensitized solar cells. J. Ceram. Process. Res. 14, 595–600 (2013)

    Google Scholar 

  32. M. Jung, NMR characterization on the preparation of sol–gel derived mixed oxide materials. Int. J. Inorg. Mater. 3, 471–478 (2001)

    Article  Google Scholar 

  33. Y. Zhang, S. Wei, H. Zhang, S. Liu, F. Nawaz, F.-S. Xiao, Nano-porous polymer monoliths as adsorptive supports for robust photo-catalyst of Degussa P25. J. Colloid Interface Sci. 339, 434–438 (2009)

    Article  Google Scholar 

  34. J.A. Gadsden, Infrared Spectra of Minerals and Related Inorganic Compounds, 1st edn. (Butterworth Ltd., Waltham, 1975)

    Google Scholar 

  35. M. Montazeri-Pour, A. Ataie, Synthesis of nano-crystalline barium ferrite in ethanol/water media. J. Mater. Sci. Technol. 25, 465–469 (2009)

    Google Scholar 

  36. D.A. Kumar, J.M. Shyla, F.P. Xavier, Synthesis and characterization of TiO2/SiO2 nano-composites for solar cell applications. Appl. Nanosci. 2, 429–436 (2012)

    Article  Google Scholar 

  37. W.-I. Kim, I.-K. Hong, Synthesis of monolithic titania–silica composite aero-gels with supercritical drying process. J. Ind. Eng. Chem. 9, 728–734 (2003)

    Google Scholar 

  38. D. Chen, D. Yang, Q. Wang, Z. Jiang, Effects of boron doping on photo-catalytic activity and microstructure of titanium dioxide nanoparticles. Ind. Eng. Chem. Res. 45, 4110–4116 (2006)

    Article  Google Scholar 

  39. S. Hofmann, Auger- and X-Ray Photoelectron Spectroscopy in Materials Science: A User-Oriented Guide (Springer, Berlin, 2013)

    Book  Google Scholar 

  40. J.M. Wagner, X-Ray Photoelectron Spectroscopy (Nova Science, New York, 2011)

    Google Scholar 

  41. H. Zhang, X. Luo, J. Xu, B. Xiang, D. Yu, Synthesis of TiO2/SiO2 core/shell nanocable arrays. J. Phys. Chem. B 108, 14866–14869 (2004)

    Article  Google Scholar 

  42. X. Gao, I.E. Wachs, TiO2–silica as catalysts: molecular structural characteristics and physico-chemical properties. Catal. Today 51, 233–254 (1999)

    Article  Google Scholar 

  43. W.D. Callister, D.G. Rethwisch, Materials Science and Engineering: An Introduction, 8th edn. (Wiley, Chichester, 2009)

    Google Scholar 

  44. S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area, and Porosity, 2nd edn. (Academic Press, London, 1982)

    Google Scholar 

Download references

Acknowledgments

The financial support of this work by the Iran National Science Foundation (INSF), Grant No. 90004426, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Rajabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tizjang, V., Montazeri-Pour, M., Rajabi, M. et al. Surface modification of sol–gel synthesized TiO2 photo-catalysts for the production of core/shell structured TiO2–SiO2 nano-composites with reduced photo-catalytic activity. J Mater Sci: Mater Electron 26, 3008–3019 (2015). https://doi.org/10.1007/s10854-015-2791-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2791-z

Keywords

Navigation