Skip to main content
Log in

Effects of substrate temperature on structural and electrical properties of cubic silicon carbide films deposited by hot wire chemical vapor deposition technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Influence of substrate temperature (TS) on the structural and electrical properties of cubic silicon carbide (3C-SiC) films deposited using hot wire chemical vapor deposition technique has been investigated. The films are deposited on fused quartz and crystalline silicon wafer substrates using pure silane, hydrogen and methane gas as precursors. X-ray diffraction patterns, Raman scattering and Fourier transform infrared spectroscopy revealed that the films prepared below TS ≤ 450 °C are nanocrystalline embedded in amorphous SiC matrix while those with TS > 450 °C are highly crystalline. As TS increases from 350 to 850 °C the dark conductivity (at ~50 °C) increases from ~2 × 10−9 to 6 × 10−2 Ω−1 cm−1 and activation energy decreases from 0.57 to 0.086 eV. A reasonable deposition rate of ~10 nm min−1 is obtained for highly crystalline films deposited at high TS. The deposition rate for nanocrystalline embedded amorphous films deposited at TS ~ 350 °C is quite high ~92 nm min−1. The improvement in crystallinity and decrease in deposition rate for high TS films is due to enhanced surface diffusivity of film forming radicals on the substrate surface and etching of weak bonds. Our studies indicates that it is possible to grow highly 3C-SiC films at moderate temperature of 550 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W.J. Choyke, H. Matsunami, G. Pensl, Silicon Carbide: Recent Major Advances, 2nd edn. (Springer, New York, 2003), p. 4

    Google Scholar 

  2. F. Nava, G. Bertuccio, A. Cavallini, E. Vittones, Silicon carbide and its use as a radiation detector material. Meas. Sci. Technol. 19, 102001 (2008)

    Article  Google Scholar 

  3. C.W. Liu, J.C. Sturm, Low temperature chemical vapor deposition growth of β-SiC on (100) Si using methylsilane and device characteristics. J. Appl. Phys. 82, 4558 (1997)

    Article  Google Scholar 

  4. I.A. Yunaz, K. Hashizume, S. Miyajima, A. Yamada, M. Konagai, Fabrication of amorphous silicon carbide films using VHF-PECVD for triple-junction thin-film solar cell applications. Sol. Energy Mater. Sol. Cells 93, 1056 (2009)

    Article  Google Scholar 

  5. F. Finger, O. Astakhov, T. Bronger, R. Carius, T. Chen, A. Dasgupta, A. Gordijn, L. Houben, Y. Huang, S. Klein, Microcrystalline silicon carbide alloys prepared with HWCVD as highly transparent and conductive window layers for thin film solar cells. Thin Solid Films 517, 3507 (2009)

    Article  Google Scholar 

  6. J. Zhang, C. Carraro, R.T. Howe, R. Maboudian, Electrical, mechanical and metal contact properties of polycrystalline 3C-SiC films for MEMS in harsh environments. Surf. Coat. Technol. 201, 8893 (2007)

    Article  Google Scholar 

  7. S. Noh, J. Seo, E. Lee, The fabrication by using surface MEMS of 3C-SiC micro-heaters and RTD sensors and their resultant properties. Trans. Electr. Electron. Mater. 10, 131 (2009)

    Article  Google Scholar 

  8. H.S. Jha, P. Agarwal, J. Mater. Sci. Mater. Electron. (2014). doi:10.1007/s10854-014-2550-6

    Google Scholar 

  9. H. Matsumura, Formation of silicon-based thin films prepared by Catalytic Chemical Vapor Deposition (Cat-CVD) method. Jpn. J. Appl. Phys. 37, 3175 (2003)

    Article  Google Scholar 

  10. A. Tabata, T. Nakajima, T. Mizutani, Y. Suzuoki, Preparation of wide-gap hydrogenated amorphous silicon carbide thin films by hot-wire chemical vapor deposition at a low tungsten temperature. Jpn. J. Appl. Phys. 42, L10 (2003)

    Article  Google Scholar 

  11. Y. Komura, A. Tabata, T. Naritu, A. Kondo, T. Mizutani, Nanocrystalline cubic silicon carbide films prepared by hot-wire chemical vapor deposition using SiH4/CH4/H2 at a low substrate temperature. J. Non-Cryst. Solids 352, 1367 (2006)

    Article  Google Scholar 

  12. A. Tabata, Y. Komura, Y. Hoshide, T. Naritu, A. Kondo, Properties of nanocrystalline cubic silicon carbide thin films prepared by Hot-Wire chemical vapor deposition using SiH4/CH4/H2 at various substrate temperatures. Jpn. J. Appl. Phys. 47, 561 (2008)

    Article  Google Scholar 

  13. A. Tabata, Y. Komura, Preparation of nanocrystalline cubic silicon carbide thin films by hot-wire CVD at various filament-to-substrate distances. Surf. Coat. Technol. 201, 8986 (2007)

    Article  Google Scholar 

  14. F.S. Tehrani, B.T. Goh, M.R. Muhamad, S.A. Rahman, Pressure dependent structural and optical properties of silicon carbide thin films deposited by hot wire chemical vapour deposition from pure silane and methane gases. J. Mater. Sci. Mater. Electron. 24, 1361 (2013)

    Article  Google Scholar 

  15. F.S. Tehrani, S.A. Rahman, Influence of filament to substrate distance on the spectroscopic, structural and optical properties of silicon carbide thin films deposited by HWCVD technique. J. Mater. Sci. Mater. Electron. 25, 2366 (2014)

    Article  Google Scholar 

  16. S. Miyajima, K. Haga, A. Yamada, M. Konagai, Low-temperature deposition of highly conductive n-type hydrogenated nanocrystalline cubic SiC films for solar cell applications. Jpn. J. Appl. Phys. 45, L432 (2006)

    Article  Google Scholar 

  17. T. Itoh, Y. Katoh, T. Fujiwara, K. Fukunaga, S. Nonomura, S. Nitta, Preparation of silicon–carbon alloy films by hot-wire CVD and their properties. Thin Solid Films 395, 240 (2001)

    Article  Google Scholar 

  18. B.P. Swain, R.O. Dusane, Effect of substrate temperature on HWCVD deposited a-SiC: H films. Mater. Lett. 61, 4731 (2007)

    Article  Google Scholar 

  19. Y. Komura, A. Tabata, T. Narita, A. Kondo, Influence of gas pressure on low-temperature preparation and film properties of nanocrystalline 3C-SiC thin films by HW-CVD using SiH4/CH4/H2 system. Thin Solid Films 516, 633 (2008)

    Article  Google Scholar 

  20. Y. Hoshide, Y. Komura, A. Tabata, A. Kitagawa, A. Kondo, Importance of H2 gas for growth of hot-wire CVD nanocrystalline 3C-SiC from SiH4/CH4/H2. Thin Solid Films 517, 3520 (2009)

    Article  Google Scholar 

  21. F.S. Tehrani, M.R. Badaruddin, R.G. Rahbari, M.R. Muhamad, S.A. Rahman, Low-pressure synthesis and characterization of multiphase SiC by HWCVD using CH4/SiH4. Vacuum 86, 1150 (2012)

    Article  Google Scholar 

  22. A. Dasgupta, Y. Huang, L. Houben, S. Klein, F. Finger, R. Carius, M. Luysberg, Effect of filament and substrates on the structural and electrical properties of SiC thin films grown by the HWCVD technique. Thin Solid Films 516, 622 (2008)

    Article  Google Scholar 

  23. S. Miyajima, A. Yamada, M. Konagai, Properties of hydrogenated microcrystalline cubic silicon carbide films deposited by hot wire chemical vapour deposition at a low substrate temperature. Jpn. J. Appl. Phys. 43, L1190 (2004)

    Article  Google Scholar 

  24. A. Dasgupta, S. Klein, L. Houben, R. Carius, F. Finger, M. Luysberg, Microstructure of highly crystalline silicon carbide thin films grown by HWCVD technique. Thin Solid Films 516, 618 (2008)

    Article  Google Scholar 

  25. H.S. Jha, M. Singh, A. Yadav, Lalhriatzuala, D. Deva, P. Agarwal, Nanocrystalline cubic Silicon Carbide thin films for the window layer of solar cells deposited by Hot Wire CVD. Proc. SPIE 8549, 85493D (2012)

    Article  Google Scholar 

  26. H.S. Jha, A. Yadav, M. Singh, S. Kumar, P. Agarwal, Growth of wide band gap nanocrystalline Silicon Carbide films by HWCVD: influence of filament temperature on structural and opto-electronic properties. J. Electron. Mater. (2015). doi:10.1007/s11664-014-3580-9

    Google Scholar 

  27. P. Gogoi, H.S. Jha, P. Agarwal, High band gap nanocrystallite embedded amorphous silicon prepared by hotwire chemical vapour deposition. Thin Solid Films 518, 6818 (2010)

    Article  Google Scholar 

  28. A. Tabata, A. Naito, Structural changes in tungsten wire and their effect on the properties of hydrogenated nanocrystalline cubic silicon carbide thin films. Thin Solid Films 519, 4451 (2011)

    Article  Google Scholar 

  29. M. Ohring, Materials Science of Thin Films, 2nd edn. (Academic Press, California, 2002), pp. 357–410

    Google Scholar 

  30. S.R. Jadkar, J.V. Sali, A.M. Funde, N.A. Bakr, P.B. Vidyasagar, R.R. Hawaldar, D.P. Amalnerkar, Deposition of hydrogenated amorphous silicon (a-Si:H) films by hot-wire chemical vapor deposition (HW-CVD) method: Role of substrate temperature. Sol. Energy Mater. Sol. Cells 91, 714 (2007)

    Article  Google Scholar 

  31. R.J. Nemanish, J.T. Glass, G. Lucovosky, R.E. Schorder, Raman scattering characterization of carbon bonding in diamond and diamond like thin films. J. Vac. Sci. Technol. A6, 1783 (1988)

    Article  Google Scholar 

  32. T. Rajagopalan, X. Wang, B. Lahlouh, C. Ramkumar, P. Dutta, S. Gangopadhyay, Low temperature deposition of nanocrystalline silicon carbide films by plasma enhanced chemical vapor deposition and their structural and optical characterization. J. Appl. Phys. 94, 5252 (2003)

    Article  Google Scholar 

  33. Q. Cheng, S. Xu, J.W. Chai, S.Y. Huang, Y.P. Ren, J.D. Long, P.P. Rutkevych, K. Ostrikov, Influence of hydrogen dilution on the growth of nanocrystalline silicon carbide films by low-frequency inductively coupled plasma chemical vapour deposition. Thin Solid Films 516, 5991 (2008)

    Article  Google Scholar 

  34. W.K. Choi, T.Y. Ong, L.S. Tan, F.C. Loh, K.L. Tan, Infrared and X-ray photoelectron spectroscopy studies of as-prepared and furnace-annealed radio-frequency sputtered amorphous silicon carbide films. J. Appl. Phys. 83, 4968 (1998)

    Article  Google Scholar 

  35. R.A. Street, Doping and the Fermi energy in amorphous silicon. Phys. Rev. Lett. 49, 1187 (1982)

    Article  Google Scholar 

Download references

Acknowledgments

The work reported here is supported by Board for Research in Fusion Science and Technology (BRFST). We are very thankful to DST, New Delhi (FIST Program, Ref. No: SR/FST/PSII-020/2009) for XRD and Central Instrument Facility, IIT Guwahati, for Raman measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratima Agarwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, H.S., Agarwal, P. Effects of substrate temperature on structural and electrical properties of cubic silicon carbide films deposited by hot wire chemical vapor deposition technique. J Mater Sci: Mater Electron 26, 2844–2850 (2015). https://doi.org/10.1007/s10854-015-2767-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2767-z

Keywords

Navigation