Skip to main content
Log in

Effect of calcination temperature on structural and optical properties of europium (III) doped SrO–Y2O3 phosphor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The SrO–Y2O3:Eu3+ phosphor was synthesized by using solution combustion synthesis and calcined at different temperature. The structure and morphology of the as-prepared material were confirmed by using powder X-ray diffraction pattern and scanning electron microscopy respectively. Further, the phosphors were studied for photoluminescence (PL) and ultraviolet spectroscopy (UV–Vis) for optical measurements. The relation in the site symmetry of Eu3+ was correlated by red to orange ratio, which changes with different calcination temperature. Moreover, the PL spectra shows that there is shifting towards the longer wavelength region with increasing calcination temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.V. Raju, S. Sailaja, C.N. Raju, B.S. Reddy, J. Lumin. 131, 1438 (2011)

    Article  Google Scholar 

  2. K.A. Koparkar, Ind. Streams Res. J. 3, 1 (2013)

    Google Scholar 

  3. K.A. Koparkar, N.S. Bajaj, S.K. Omanwar, Opt. Mater. 39, 74 (2015)

    Article  Google Scholar 

  4. M. Mączka, A. Bednarkiewicz, E. Mendoza-Mendoza, A.F. Fuentes, L. Kępiński, Chem. Phys. 143, 1039 (2014)

    Google Scholar 

  5. J. Sun, W. Zhou, Y. Sun, J. Zeng, Opt. Commun. 296, 84 (2013)

    Article  Google Scholar 

  6. L. Tian, P. Yang, H. Wu, F. Li, J. Lumin. 130, 717 (2010)

    Article  Google Scholar 

  7. Y. Li, Y. Zheng, Q. Wang, C.C. Zhang, Mater. Chem. Phys. 135, 451 (2012)

    Article  Google Scholar 

  8. J. Sokolnicki, Mater. Chem. Phys. 131, 306 (2011)

    Article  Google Scholar 

  9. Y. Su, L. Li, G. Li, Chem. Mater. 20, 6060 (2008)

    Article  Google Scholar 

  10. W. Xu, W. Jiaz, I. Revira, K. Monge, J. Electrochem. Soc. 148, H176 (2001)

    Article  Google Scholar 

  11. P.A. Nagpure, N.S. Bajaj, R.P. Sonekar, S.K. Omanwar, Ind. J. Pure Appl. Phys. 49, 799 (2011)

    Google Scholar 

  12. M. Ayvacıklı, A. Ege, S. Yerci, N. Can, J. Lumin. 131, 2432 (2011)

    Article  Google Scholar 

  13. F. Wen, J. Chen, J.-H. Moon, J. Kim, J. Niu, W. Li, J. Solid State Chem. 177, 3114 (2004)

    Article  Google Scholar 

  14. Y. Wu, Y. Wang, D. He, M. Fu, Y. Zhao, Y. Li, F. Miao, J. Nanosci. Nanotech. 11, 9439 (2011)

    Article  Google Scholar 

  15. H. Zhang, M. Lu, Z. Yang, Z. Xiu, G. Zhou, S. Wang, Y. Zhou, S. Wang, J. Alloys Compd. 426, 384 (2006)

    Article  Google Scholar 

  16. P. Maestro, D. Huguenin, A. Seigneurin, F. Deneuve, P.L. Lann, J.F. Berar, J. Electrochem. Soc. 139, 1479 (1992)

    Article  Google Scholar 

  17. J.I. Goo, S.M. Kim, H.K. Shin, H.C. Hong, S.Y. Yoon, Korean J. Mat. Res. 19, 163 (2009)

    Article  Google Scholar 

  18. T. Zhan, C.-N. Xu, H. Yamada, Y. Terasawa, L. Zhang, H. Iwase, M. Kawaid, RSC Adv. 2, 328 (2012)

    Article  Google Scholar 

  19. J. Geng, Z. Wu, J. Mater. Synth. Process. 10, 245 (2002)

    Article  Google Scholar 

  20. Z. Fu, H.K. Yang, J.H. Jeong, J. Korean Phys. Soc. 52, 635 (2008)

    Article  Google Scholar 

  21. Z. Fu, S. Zhou, Y. Yu, S. Zhang, J. Phys. Chem. B 109, 23320 (2005)

    Article  Google Scholar 

  22. V. Dubey, J. Kaura, S. Agrawal, N.S. Suryanarayana, K.V.R. Murthy, Optik 124, 5585 (2013)

    Article  Google Scholar 

  23. E. Pavitra, G.S.R. Raju, W. Park, J.S. Yu, New J. Chem. 38, 163 (2014)

    Article  Google Scholar 

  24. Y. Zhang, D. Geng, M. Shang, X. Zhang, X. Li, Z. Cheng, H. Lian, J. Lin, Dalton Trans. 42, 4799 (2013)

    Article  Google Scholar 

  25. K.A. Koparkar, N.S. Bajaj, S.K. Omanwar, Adv. Opt. Tech. (2014). doi:10.1155/2014/706459

    Google Scholar 

  26. K.A. Koparkar, N.S. Bajaj, S.K. Omanwar, Ind. J Phys. (2014). doi:10.1007/s12648-014-0554-y

    Google Scholar 

  27. J. Tauc, in Optical Properties of Solids, ed. by F. Abeles (North-Holland, Amsterdam, 1970)

    Google Scholar 

  28. X. Liu, F. Zhou, M. Gu, S. Huang, B. Liu, C. Ni, Opt. Mater. 31, 126 (2008)

    Article  Google Scholar 

  29. S. Sakthivel, H. Kisch, Angew. Chem. Int. Ed. 42, 4908 (2003)

    Article  Google Scholar 

  30. J. Sokolnicki, E. Zych, J. Lumin. 158, 65 (2015)

    Article  Google Scholar 

  31. H. Lai, A. Bao, Y. Yang, Y. Tao, H. Yang, J. Nanopart. Res. 10, 1355 (2008)

    Article  Google Scholar 

  32. K.A. Koparkar, N.S. Bajaj, S.K. Omanwar, Inter. J. ChemTech Res. 6, 3287 (2014)

    Google Scholar 

  33. Z. Fu, S. Zhou, S. Zhang, J. Opt. Soc. Am. B 23, 1852 (2006)

    Article  Google Scholar 

  34. L. Zhou, J. Shi, M. Gong, J. Lumin. 113, 285 (2005)

    Article  Google Scholar 

  35. R.H. Krishna, B.M. Nagabhushana, H. Nagabhushana, N.S. Murthy, S.C. Sharma, C. Shivakumara, R.P.S. Chakradhar, J. Phys. Chem. C 117, 1915 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

Kishor A. Koparkar is thankful to the Chairman of the FIST-DST Project at SGB Amravati University, Amravati, for providing XRD facility for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Koparkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koparkar, K.A., Bajaj, N.S. & Omanwar, S.K. Effect of calcination temperature on structural and optical properties of europium (III) doped SrO–Y2O3 phosphor. J Mater Sci: Mater Electron 26, 2748–2753 (2015). https://doi.org/10.1007/s10854-015-2754-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2754-4

Keywords

Navigation