Skip to main content

Advertisement

Log in

Effects of Ca doping on the energy storage properties of (Sr, Ca)TiO3 paraelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The energy storage properties of Ca-doped (Sr, Ca)TiO3 (SCT) paraelectric ceramics have been intensively investigated by traditional solid state sintering method. Phase structures and morphology were detected by the X-ray diffraction and SEM, respectively. The electric field strength dependence of polarization was measured and employed to calculate the energy storage density. The doped SCT ceramics exhibit high permittivity, low loss, and higher breakdown strength. At 333 kV/cm electric field strength, the energy storage density of the 2 mol % Ca-doped SrTiO3 ceramics with fine grain can achieve 1.95 J/cm3, which is 2.8 times of pure SrTiO3 in the literature, and its energy storage efficiency reaches 72.3 %. Therefore, the SCT ceramics might be a kind of promising energy storage dielectric material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Ogihara, C.A. Randall, S. Trolier-Mckinstry, High-energy density capacitors utilizing 0.7BaTiO3–0.3BiScO3 ceramics. J. Am. Ceram. Soc. 92(8), 1719–1724 (2009)

    Article  Google Scholar 

  2. D.P. Shay, N.J. Podraza, N.J. Donnelly, C.A. Randall, High energy density, high temperature capacitors utilizing Mn-doped 0.8CaTiO3–0.2CaHfO3 ceramics. J. Am. Ceram. Soc. 95, 1348–1355 (2012)

    Article  Google Scholar 

  3. D. Zhan, Q. Xu, D.-P. Huang, H.-X. Liu, W. Chen, F. Zhang, Dielectric responses of glass-added Ba0.95Ca0.05Zr0.3Ti0.7O3 ceramics for energy storage capacitors. Phys. B Condens. Matter 440, 67–72 (2014)

    Article  Google Scholar 

  4. N. Ortega, A. Kumar, J.F. Scott, B.C. Douglas, M. Tomazawa, K. Shalini, D.G.B. Diestra, R.S. Katiyar, Relaxor-ferroelectric superlattices: high energy density capacitors. J. Phys.: Condens. Matter 24, 445901 (2012)

    Google Scholar 

  5. T.M. Correia, M. McMillen, M.K. Rokosz, P.M. Weaver, J.M. Gregg, G. Viola, M.G. Cain, Density ceramic for energy storage applications. J. Am. Ceram. Soc. 96(9), 2699–2702 (2013)

    Article  Google Scholar 

  6. Q. Zhang, Y. Zhang, X. Wang, T. Ma, Z. Yuan, Influence of sintering temperature on energy storage properties of BaTiO3–(Sr1−1.5xBix)TiO3 ceramics. Ceram. Int. 38, 4765–4770 (2012)

    Article  Google Scholar 

  7. I. Burn, D.M. Smyth, Energy storage in ceramic dielectrics. J. Mater. Sci. 7, 339–343 (1972)

    Article  Google Scholar 

  8. G. Dong, S. Ma, J. Du, J. Cui, Dielectric properties and energy storage density in ZnO-doped Ba0.3Sr0.7TiO3 ceramics. Ceram. Int. 35, 2069–2075 (2009)

    Article  Google Scholar 

  9. H. Yan, T. Jo, H. Okuzaki, Synthesis and electrophoretic deposition of high-dielectric-constant SrTiO3 nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 346(1–3), 99–105 (2009)

    Article  Google Scholar 

  10. H. Yan, T. Jo, H. Okuzaki, Low-voltage pentacene field-effect transistors fabricated on high-dielectric-constant strontium titanate insulator, Japanese. J. Appl. Phys. 49(3), 030203 (2010)

    Article  Google Scholar 

  11. A.D. Hilton, B.W. Ricketts, Dielectric properties of Ba1−xSrxTiO3 ceramics. J. Phys. D Appl. Phys. 29(5), 1321–1325 (1996)

    Article  Google Scholar 

  12. R.P. Wang, Y. Inaguma, M. Itoh, Dielectric properties and phase transition mechanisms in Sr1−xBaxTiO3 solid solution at low doping concentration. Mater. Res. Bull. 36, 1693–1701 (2001)

    Article  Google Scholar 

  13. G. Trini, A.D. Hilton, B.W. Ricketts, Dielectric energy storage in PbxSr1−xTiO3 ceramics. J. Mater. Sci.: Mater. Electron. 12(1), 17–20 (2001)

    Google Scholar 

  14. Q.-G. Hu, Z.-Y. Shen, Y.-M. Li, Z.-M. Wang, W.-Q. Luo, Z.-X. Xie, Enhanced energy storage properties of dysprosium doped strontium titanate ceramics. Ceram. Int. (Part B) 40(1), 2529–2534 (2014)

    Article  Google Scholar 

  15. Z.-Y. Shen, Y.-M. Li, W.-Q. Luo, Z.-M. Wang, X.-Y. Gu, R.-H. Liao, Structure and dielectric properties of NdxSr1−xTiO3 ceramics for energy storage application. J. Mater. Sci.: Mater. Electron. 24, 704–710 (2013)

    Google Scholar 

  16. G. Zhao, Y. Li, H. Liu, J. Xu, H. Hao, M. Cao, Z. Yu, Effect of SiO2 additives on the microstructure and energy storage density of SrTiO3 ceramics. J. Ceram. Process. Res. 13, 310–314 (2012)

    Google Scholar 

  17. L.X. Li, X.X. Yu, H.C. Cai, Q.W. Liao, Y.M. Han, Z.D. Gao, Preparation and dielectric properties of BaCu(B2O5)-doped SrTiO3-based ceramics for energy storage. Mater. Sci. Eng., B 178(20), 1509–1514 (2013)

    Article  Google Scholar 

  18. Z. Wang, M. Cao, Z. Yao, Z. Song, G. Li, W. Hu, H. Hao, H. Liu, Dielectric relaxation behavior and energy storage properties in SrTiO3 ceramics with trace amounts of ZrO2 additives. Ceram. Int. 40, 14127–14132 (2014)

    Article  Google Scholar 

  19. S. Chao, F. Dogan, BaTiO3–SrTiO3 layered dielectrics for energy storage. Mater. Lett. 65(6), 978–981 (2011)

    Article  Google Scholar 

  20. Z.J. Wang, M.H. Cao, Z.H. Yao, G.Y. Li, Z. Song, W. Hu, H. Hao, H.X. Liu, Z.Y. Yu, Effects of Sr/Ti ratio on the microstructure and energy storage properties of nonstoichiometric SrTiO3 ceramics. Ceram. Int. (Part A) 40(1), 929–933 (2014)

    Article  Google Scholar 

  21. M. Ceh, D. Kolar, L. Golic, J. Solid State Chem. 68, 68–72 (1987)

    Article  Google Scholar 

  22. Y. Nakano, N. Ichinose, J. Mater. Res. 5, 2910–2921 (1990)

    Article  Google Scholar 

  23. Z.H. Yao, H.X. Liu, Y. Liu, Z.H. Wu, Z.Y. Shen, Y. Liu, M.H. Cao, Structure and dielectric behavior of Nd-doped BaTiO3perovskites. Mater. Chem. Phys. 109(2–3), 475–481 (2008)

    Article  Google Scholar 

  24. T. Mitsui, W.B. Westphal, Dielectric and X-Ray Studies of CaxBa1−xTiO3, and CaxSr1−xTiO3. Phys. Rev. 124(5), 1354–1359 (1961)

    Article  Google Scholar 

  25. D.W. Kang, T.G. Park, J.W. Kim, J.S. Kim, H.S. Lee, H. Cho, Effect of dysprosium oxide addition on the microstructure and dielectric properties of BaTiO3 ceramics. Electron. Mater. Lett. 6(4), 145–149 (2010)

    Article  Google Scholar 

  26. S.H. Yoon, S.H. Kwon, K.H. Hur, Dielectric relaxation behavior of acceptor (Mg)-doped BaTiO3. J. Appl. Phys. 109, 084117 (2011)

    Article  Google Scholar 

  27. S.H. Yoon, C.A. Randall, K.H. Hur, Influence of grain size on impedance spectra and resistance degradation behavior in acceptor (Mg)-doped BaTiO3 ceramics. J. Am. Ceram. Soc. 92(12), 2944–2952 (2009)

    Article  Google Scholar 

  28. C. Ang, Z. Yu, L.E. Cross, Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3. Phys. Rev. B 62, 228–236 (2000)

    Article  Google Scholar 

  29. J. Chen, Y. Zhang, C. Deng, X. Dai, L. Li, Effect of the Ba/Ti ratio on the microstructures and dielectric properties of barium titanate-based glass ceramics. J. Am. Ceram. Soc. 92, 1350–1353 (2009)

    Article  Google Scholar 

  30. A.L. Young, G.E. Hilmas, S.C. Zhang, R.W. Schwartz, Mechanical vs. electrical failure mechanisms in high voltage, high energy density multilayer ceramic capacitors. J. Mater. Sci. 42, 5613–5619 (2007)

    Article  Google Scholar 

  31. J. Huang, Y. Zhang, T. Ma, H. Li, L. Zhang, Correlation between dielectric breakdown strength and interface polarization in barium strontium titanate glass ceramics. Appl. Phys. Lett. 96, 042902 (2010)

    Article  Google Scholar 

  32. Y. Ye, S.C. Zhang, F. Dogan, E. Schamiloglu, J. Gaudet, P. Castro, M. Royba, M. Joler, Influence of nanocrystalline grain size on the breakdown strength of ceramic dielectrics. PPC-2003:14th IEEE International Pulsed Power Conference, vol. 1, pp. 719–722 (2003)

  33. Z. Song, H. Liu, S. Zhang, Z. Wang, Y. Shi, H. Hao, M. Cao, Z. Yao, Z. Yu, Effect of grain size on the energy storage properties of (Ba0.4Sr0.6)TiO3 paraelectric ceramics. J. Eur. Ceram. Soc. 34, 1209–1217 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by International Technology Cooperation Project from Ministry of Science and Technology of China (No. 2011DFA52680), Key Program of Natural Science Foundation of China (No. 50932004), Natural Science Foundation of China (No. 51102189), the Fundamental Research Funds for the Central Universities (No. 123243001), National Key Basic Research Program of China (No. 2015CB654601) and the program for New Century Excellent Talents in University (No. NCET-11-0685).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanxing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, GF., Liu, H., Yao, Z. et al. Effects of Ca doping on the energy storage properties of (Sr, Ca)TiO3 paraelectric ceramics. J Mater Sci: Mater Electron 26, 2726–2732 (2015). https://doi.org/10.1007/s10854-015-2749-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2749-1

Keywords

Navigation