Preparation and properties of a flexible night vision imaging system filter for avionic LED displays

  • Kaiyuan Yang
  • Lixi Wang
  • Qitu Zhang


A flexible near-infrared (NIR) absorption filter well suited for use as a front surface filter for night vision imaging system (NVIS) LED displays was prepared by using a transparent polymer film and acrylic resin as substrate, NIR-dyes NIR787 and NIR860 as functional additives through the solvent mixing method. In particular, this new dye-based NVIS filter material offers sharp spectral cut-off and excellent extinction in the NIR (665–930 nm) along with an appropriate transmittance in the visible spectrum (400–700 nm). The optical performance of the filter was studied, the optimal dosage of NIR787 and NIR860 was determined and the results showed there was a good linear relationship between amount of NIR-dyes and light transmittance. In addition, the filter kept good environmental stability after cyclic humid heat test, high temperature aging test, low temperature aging test and photostability test.


Hexamethylene Diisocyanate Resin Substrate Good Environmental Stability Nickel Chloride Hexahydrate Active Matrix Liquid Crystal Display 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).


  1. 1.
    S. Roberto, A.R. Mark, C. Maurizio, T. Mario, F. Pietro, Aerosp. Sci. Technol. 31, 10–23 (2013)CrossRefGoogle Scholar
  2. 2.
    D. Jurkow, G. Lis, Optica Applicata. 44(1), 93–101 (2014)Google Scholar
  3. 3.
    H.S. Chen, C.K. Hsu, H.Y. Hong, IEEE Photonics Technol. Lett. 18(1), 193–195 (2006)CrossRefGoogle Scholar
  4. 4.
    L.K. Van Geest, K.W.J. Stoop, Adv. Electron. Electron Phys. 64, 93–100 (1985)CrossRefGoogle Scholar
  5. 5.
    J.S. Li, J. Appl. Opt. 19(3), 10–13 (1998)Google Scholar
  6. 6.
    R. Sabatini, M.A. Richardson, M. Cantiello, M. Toscano, P. Fiorini, D. Zammit-Mangion, A. Gardi, J. Test. Eval. 42(1), 16–32 (2014)CrossRefGoogle Scholar
  7. 7.
    Z.R. Li, J. Shen, L.B. Pan, L.G. Xu, L. Wu, Laser Optoelectron. Prog. 51(5), 0523031–0523037 (2014)Google Scholar
  8. 8.
    H. Robert, Z. Pete, U. Ted, Soc SPIE 6225, 62250B–62255B (2006)Google Scholar
  9. 9.
    E.B. Bud, L.B. Rick. Cockpit Displays VIII: Displays for Defense Applications, Proceedings of SPIE, ed. by D.G. Hopper. (International Society for Optical Engineering, Bellingham, Washington, 2001), 4362, 294–300Google Scholar
  10. 10.
    E.M. Donald, J.J. Ricky, U.S. Patent 6,714,186 B1, 20 Mar 2004Google Scholar
  11. 11.
    F.B. Wu, D.W. Zhang, S.Z. Shang, Y.M. Zhu, S.L. Zhuang, J. Xu, J. Nanomater. (2012). doi: 10.1155/2012/629157
  12. 12.
    F. Juren, N. Hiroyuki, M. Masaru, Chem. Rev. 92(6), 1197–1226 (1992)CrossRefGoogle Scholar
  13. 13.
    L. Berezhinsky, K.H. Kwon, B.S. Park, Jpn. J. Appl. Phys. 40(10), 5953–5954 (2001)CrossRefGoogle Scholar
  14. 14.
    R.J. Johnson, J.J. Freesmeier, U.S. Patent 8,641,219-B1, 4 Feb 2014Google Scholar
  15. 15.
    L.C. Richard, R.S. Craig, U.S. Patent 6,467,914 B1, 22 Oct 2002Google Scholar
  16. 16.
    L. Zhang, Z. Lu, P.D. Han, L.X. Wang, Q.T. Zhang, J. Nanomater. Article ID 848274 (2012)Google Scholar
  17. 17.
    H.X. Ma, X.S. Lu, Chin. J. Liq. Cryst. Disp. 28(3), 373–376 (2013)CrossRefGoogle Scholar
  18. 18.
    G David, U.S. Patent 5,234,871, 10 Aug 1993Google Scholar
  19. 19.
    A. Yoshinobu, K. Hiroaki, U.S. 6,903,036 B2, 7 June 2005Google Scholar
  20. 20.
    J.M. Sunish, C.K. Suddapalli, L. Giribabu, R.S. Venugopal, Mater. Lett. 61(22), 4426–4431 (2007)CrossRefGoogle Scholar
  21. 21.
    J.F. Men, H.F. Cheng, Z.H. Chen, Q. Wang, Infrared Technol. 29(5), 302–305 (2007)Google Scholar
  22. 22.
    J.F. Men, H.F. Cheng, Z.H. Chen, Z.Y. Chu, W.W. Zheng, Q. Wang, Infrared Technol. 30(3), 150–153 (2008)Google Scholar
  23. 23.
    F. Dai, L.X. Wang, Q.T. Zhang, Acta Polym. Sin. 5, 521–527 (2012)CrossRefGoogle Scholar
  24. 24.
    W. Li, CN203642026-U, 11 June 2014Google Scholar
  25. 25.
    R.J. Michael, N.S. Albert, J.J. Ricky, U.S. 7,081,991, 25 July 2006Google Scholar
  26. 26.
    D.G. Krashkevich, U.S. 5,234,871, 10 Aug 1993Google Scholar
  27. 27.
    L.B. Alan, H.H. Richard, J. Am. Chem. Soc. 88(22), 5202 (1966)Google Scholar
  28. 28.
    G.N. Schrauzer, V.P. Mayweg, J. Am. Chem. Soc. 87(7), 1486 (1965)CrossRefGoogle Scholar
  29. 29.
    G.N. Schrauzer, V.P. Mayweg, W. Heinrich, Inorg. Chem. 4, 1616–1621 (2002)Google Scholar
  30. 30.
    Laboratory Environmental Testing Methods of Chinese Military Equipments—Humidity Test. GJB150.9-2009 (2009)Google Scholar
  31. 31.
    Laboratory Environmental Testing Methods of Chinese Military Equipments—High Temperature Test. GJB 150.3-2009 (2009)Google Scholar
  32. 32.
    Laboratory Environmental Testing Methods of Chinese Military Equipments—Low Temperature Test. GJB 150.4-2009 (2009)Google Scholar
  33. 33.
    Department of Defense. Department of Defense Interface Standard, Lighting, Aircraft, Night Vision Imaging System (NVIS) Compatible. MIL-STD-3009 (2001)Google Scholar
  34. 34.
    Department of Defense. Military Specification, Lighting, Aircraft, Interior, Night Vision Imaging System (NVIS) Compatible. MIL-L-85762A (1988)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringNanjing Tech UniversityNanjingChina

Personalised recommendations