Skip to main content
Log in

Enhanced photoluminescence of Li3Ba2Gd3 (MoO4)8:Eu3+ red phosphor synthesized by mechanochemically assisted direct solid state reaction method at room temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

For the first time, Li3Ba2Gd3−x(MoO4)8:x Eu3+ (x = 0.01, 0.03, 0.05, 0.07 and 0.09 mol) red phosphor nanoparticles were prepared using the simple mechanochemically assisted direct solid state reaction method at room temperature and the luminescence effects as a function of Eu3+ ion concentration were studied. The characteristics of the phosphor materials were investigated using X-ray diffraction, Fourier transform infrared spectroscopy, photoluminescence and kinetic decay. For 7 mol% of Eu3+ concentration, the phosphor exhibits a strong excitation peak at 395 nm signifying a strong absorption. The PL emission spectra of Li3Ba2Gd3 (MoO4)8:0.07 Eu3+ phosphors exhibited an intense peak at 615 nm (red) which relates to 5 D 0 → 7 F 2 transition of Eu3+. The most favourable Eu3+ concentration in Li3Ba2Gd3 (MoO4)8 phosphors for intensified red emission results for 7 mol% and above this concentration, the emission intensity falls off as a result of quenching effect. The CIE color coordinates of the Li3Ba2Gd3 (MoO4)8:0.07 Eu3+ red phosphor coexist very well with the standard values of NTSC. The red emission intensity of the as prepared Li3Ba2Gd3 (MoO4)8:0.07 Eu3+ red phosphor is 3.2 times better than that of the commercial Y2O2S:Eu3+ red phosphor prepared by the conventional solid state reaction method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. Chen, K.J. Chen, S.F. Hu, R.S. Li, J. Mater. Chem. 21, 3677 (2011)

    Article  Google Scholar 

  2. A.A. Reddy, S. Das, A. Goel, R. Sen, R. Siegel, AIP Adv. 3, 022126 (2013)

    Article  Google Scholar 

  3. X. Liu, Y. Liu, D. Yan, H. Zhu, C. Liu, C. Xu, Y. Liu, X. Wang, J. Mater. Chem. 22, 16839 (2012)

    Article  Google Scholar 

  4. S. Dong, S. Ye, L. Wang, X. Chen, S. Yang, Y. Zhao, J. Wang, Y. Jing, Q. Zhang, J. Alloys Compd. 610, 402 (2014)

    Article  Google Scholar 

  5. X. Chen, Z. Xia, M. Yi, X. Wu, H. Xin, J. Phys. Chem. Solids 74, 1439 (2013)

    Article  Google Scholar 

  6. R.S. Liu, Y.H. Liu, N.C. Bagkar, S.F. Hu, Appl. Phys. Lett. 91, 061119 (2007)

    Article  Google Scholar 

  7. T. Nishida, T. Ban, N. Kobayashi, Appl. Phys. Lett. 82, 3817 (2003)

    Article  Google Scholar 

  8. J. Llanos, R. Castillo, I.R. Martín, L.L. Martín, P. Haro-González, J. González-Platas, J. Lumin. 145, 553 (2014)

    Article  Google Scholar 

  9. A. Escudero, E. Moretti, M. Ocaña, CrystEngComm 16, 3274 (2014)

    Article  Google Scholar 

  10. Z.L. Wang, H.B. Liang, J. Wang, M.L. Gong, Q. Su, Appl. Phys. Lett. 89(071), 921 (2006)

    Google Scholar 

  11. V. Divya, V. Sankar, K.G. Raghu, M.L.P. Reddy, Dalton Trans. 42, 12317 (2013)

    Article  Google Scholar 

  12. R.F. Klevtsova, A.D. Vasil’ev, L.A. Glinskaya, A.D. Kruglik, N.M. Kozhevnikova, V.P. Korsun, Zh. Strukt. Khim. 33, 126 (1992)

    Google Scholar 

  13. N. Yukio, I. Masatsugu, S. Daisuke, S. Masahiko, M. Takashi, J. Phys. D Appl. Phys. 43, 354002 (2010)

    Article  Google Scholar 

  14. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)

    Article  Google Scholar 

  15. M. Rico, X. Han, C. Cascales, F. Esteban-Betegon, C. Zaldo, Opt. Express 19, 7640 (2011)

    Article  Google Scholar 

  16. M. Song, L. Zhang, G. Wang, J. Alloys Compd. 480, 839 (2009)

    Article  Google Scholar 

  17. A. Garcia-Cortes, C. Cascales, Chem. Mater. 20, 3884 (2008)

    Article  Google Scholar 

  18. M. Song, L. Wang, N. Zhang, X. Tai, G. Wang, Materials 7, 496 (2014)

    Article  Google Scholar 

  19. Y.C. Chang, C.H. Liang, S.A. Yan, Y.S. Chang, J. Phys. Chem. C 114, 3645 (2010)

    Article  Google Scholar 

  20. C. Guo, F. Ago, L. Liang, B.C. Choi, J.H. Jeong, J. Alloys Compd. 479, 607 (2009)

    Article  Google Scholar 

  21. J.S. Benjamin, Sci. Am. 234, 40 (1976)

    Article  Google Scholar 

  22. L. Takacs, J. Therm. Anal. Calorim. 90, 81 (2007)

    Article  Google Scholar 

  23. P.S. Gilman, J.S. Benjamin, Annu. Rev. Mater. Sci. 13, 279 (1983)

    Article  Google Scholar 

  24. C. Suryanarayana, Prog. Mater. Sci. 46, 1–184 (2001)

    Article  Google Scholar 

  25. L. Takacs, J. Mater. Sci. 39, 4987 (2004)

    Article  Google Scholar 

  26. M.J. Song, W. Zhao, G.F. Wang, M.L. Zhao, L.T. Wang, J. Alloys Compd. 509, 2164 (2011)

    Article  Google Scholar 

  27. R.C. Ropp, Luminescence and the Solid State (Elsevier, Amsterdam, 2004)

    Google Scholar 

  28. A. Kato, S. Oishi, T. Shishido, M. Yamazaki, S. Lida, J. Phys. Chem. Solids 66, 2079 (2005)

    Article  Google Scholar 

  29. L.J. Burcham, I.E. Wachs, Spectrochim. Acta A. 54, 1355 (1998)

    Article  Google Scholar 

  30. X.X. Wang, J. Wang, J.X. Shi, Q. Su, M.L. Gong, Mater. Res. Bull. 42, 1669 (2007)

    Article  Google Scholar 

  31. F.N. Shi, J. Meng, Y. Ren, J. Solid, State Chem. 121(1), 236 (1996)

    Article  Google Scholar 

  32. I.L.V. Rosa, A.P.A. Marques, M.T.S. Tanaka, D.M.A. Melo, E.R. Leite, E. Longo, J.A. Varela, J. Fluoresc. 18(2), 239 (2008)

    Article  Google Scholar 

  33. A. Xie, X. Yuan, F. Wang, Y. Shi, Z. Mu, J. Phys. D Appl. Phys. 43, 055101 (2010)

    Article  Google Scholar 

  34. J. Wang, X. Jing, C. Yan, J. Lin, J. Electrochem. Soc. 152(3), G186 (2005)

    Article  Google Scholar 

  35. S.K. Mahesh, P. Prabhakar Rao, M. Thomas, A.N. Radhakrishnan, P. Koshy, J. Mater. Sci. Mater. Electron. 23(9), 1605 (2012)

    Article  Google Scholar 

  36. Y. Tian, X. Qi, X. Wu, R. Hua, B. Chen, J. Phys. Chem. C 113(24), 10767 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthuvan John Peter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peter, A.J., Shameem Banu, I.B. Enhanced photoluminescence of Li3Ba2Gd3 (MoO4)8:Eu3+ red phosphor synthesized by mechanochemically assisted direct solid state reaction method at room temperature. J Mater Sci: Mater Electron 26, 2045–2052 (2015). https://doi.org/10.1007/s10854-014-2645-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2645-0

Keywords

Navigation