Skip to main content

Advertisement

Log in

Textural, structural and electrical properties of SnO2 nanoparticles prepared by the polyol method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocrystalline mesoporous SnO2 nanoparticles were synthesized by the polyol method followed by thermal annealing. The composition, texture, structure and morphology of the samples treated at 90, 500 and 700 °C in air were determined by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infra-red spectroscopy (FTIR), thermogravimetry coupled to mass spectrometry (DTA/TGA/MS) and Nitrogen Sorption Porosimetry. FTIR and TGA–MS data indicate that tin oxide species were obtained with a complete removal of polyol residues after thermal treatment above 500 °C. XRD patterns reveal that nanocrystallites of cassiterite, i.e. rutile-like tetragonal structure, SnO2 were formed after annealing, the average crystallite size increasing with the temperature of the thermal post-treatment. Moreover, TEM and N2 sorption porosimetry show that the calcined samples are composed of an aggregated network of almost spherical nanoparticles, the mesoporosity observed being related to the interparticle space. Finally, electrical properties of the SnO2 nanopowder calcined at 700 °C were studied between 543 and 723 K, in the 200 Hz–5 MHz frequency range by impedance measurements. Bulk conductivity dependence with temperature was found to follow an Arrhenius law with an activation energy of 0.68 eV that is typical of tin dioxide nanopowders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.S. Arnold, P. Avouris, Z.W. Pan, Z.L. Wang, J. Phys. Chem. B 107, 659 (2003)

    Article  Google Scholar 

  2. S. Wu, H. Cao, S. Yiu, S.X. Liu, X. Zhang, J. Phys. Chem. C 113, 17893 (2009)

    Article  Google Scholar 

  3. V. Kumar, A. Govind, R. Nagarajan, Inorg. Chem. 50, 5637 (2011)

    Article  Google Scholar 

  4. K.L. Chopra, S. Major, D.K. Pandya, Thin Solid Films 102, 1 (1983)

    Article  Google Scholar 

  5. S. Mubeen, M. Moskovits, Adv. Mater. 23, 2306 (2011)

    Article  Google Scholar 

  6. G. Shin, C.H. Yoon, M.Y. Bae, Y.C. Kim, S.K. Hong, J.A. Rogers, J.S. Ha, Small 7, 1181 (2011)

    Article  Google Scholar 

  7. H.-W. Ha, K. Kim, M. de Borniol, T. Toupance, J. Solid State Chem. 179, 702 (2006)

    Article  Google Scholar 

  8. J.S.X. Chen, W.D. Lou, Small 9, 1877 (2013)

    Article  Google Scholar 

  9. R.K. Selvan, I. Perelshtein, N. Perkas, A. Gedanken, J. Phys. Chem. C 112, 1825 (2008)

    Article  Google Scholar 

  10. C. Wang, Y. Zhou, M. Ge, X. Xu, Z. Zhang, J.Z. Jiang, J. Am. Chem. Soc. 132, 46 (2009)

    Article  Google Scholar 

  11. S. Gubbala, V. Chakrapani, V. Kumar, M.K. Sunkara, Adv. Funct. Mater. 18, 2411 (2008)

    Article  Google Scholar 

  12. A. Birkel, Y.-G. Lee, D. Koll, X. Van Meerbeek, S. Frank, M.J. Choi, Y.S. Kang, K. Char, W. Tremel, Energy Environ. Sci. 5, 5392 (2012)

    Article  Google Scholar 

  13. L. Cojocaru, C. Olivier, T. Toupance, E. Sellier, L. Hirsch, J. Mater. Chem. A. 1, 13789 (2013)

    Article  Google Scholar 

  14. L. Sangaletti, L.E. Depero, A. Dieguez, G. Marca, J.R. Morante, A. Romano-Rodriguez, G. Sberveglieri, Sens. Actuator B. 44, 268 (1997)

    Article  Google Scholar 

  15. S. Majumder, S. Hussain, R. Bhar, A.K. Pal, Vacuum 81, 985 (2007)

    Article  Google Scholar 

  16. L. Renard, O. Babot, H. Saadaoui, H. Füess, J. Brötz, A. Gurlo, E. Arveux, A. Klein, T. Toupance, Nanoscale 4, 6806 (2012)

    Article  Google Scholar 

  17. L. Li, Z. Zhu, X. Yao, G. Lu, Z. Yan, Microporous Mesoporous Mater. 112, 621 (2008)

    Article  Google Scholar 

  18. S.L. Sharp, G. Kumar, E.P. Vicenzi, A.B. Bocarsly, Chem. Mater. 10, 880 (1998)

    Article  Google Scholar 

  19. H.M. Yang, Y.H. Hu, A.D. Tang, S.M. Jin, G.Z. Qiu, J. Alloys Compd. 363, 271 (2004)

    Article  Google Scholar 

  20. F. Paraguay-Delgado, W. Antunez-Flores, M. Miki-Yoshida, A. Aguilar-Elguezabal, P. Santiago, R. Diaz, J.A. Ascencio, Nanotechnology 16, 688 (2005)

    Article  Google Scholar 

  21. B. Cheng, J.M. Russell, W. Shi, L. Zhang, E.T. Samulski, J. Am. Chem. Soc. 126, 5972 (2004)

    Article  Google Scholar 

  22. F. Du, Z. Guo, G. Li, Mater. Lett. 59, 2563 (2005)

    Article  Google Scholar 

  23. S. Fujihara, T. Maeda, H. Ohgi, E. Hosono, H. Imai, S. Kim, Langmuir 20, 6476 (2004)

    Article  Google Scholar 

  24. Y. Liu, E. Koep, M. Liu, Chem. Mater. 17, 3997 (2005)

    Article  Google Scholar 

  25. Z.R. Dai, J.L. Gole, J.D. Stout, Z.L. Wang, J. Phys. Chem. B 106, 1274 (2002)

    Article  Google Scholar 

  26. H. Yang, X. Song, X. Zhang, W. Ao, G. Qiu, Mater. Lett. 57, 3124 (2003)

    Article  Google Scholar 

  27. X. Jiang, Y. Wang, T. Herricks, Y. Xia, J. Mater. Chem. 14, 695 (2004)

    Article  Google Scholar 

  28. R. Sasikala, A. Shirole, V. Sudarsan, T. Sakuntala, C. Sudakar, R. Naik, S.R. Bharadwaj, Int. J. Hydrog. Energy 34, 3621 (2009)

    Article  Google Scholar 

  29. J. Ren, J. Yang, A. Abouimrane, D. Wang, K. Amine, J. Power Sources 196, 8701 (2011)

    Article  Google Scholar 

  30. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309 (1938)

    Article  Google Scholar 

  31. E. Barsoukov, J.R. Macdonald, in Impedance Spectroscopy Theory, Experiment, and Applications, 2nd edn. (John Wiley & Sons, Hoboken, New Jersey, 2005), pp. 1–20

  32. D. Amalric-Popescu, F. Bozon-Verduraz, Catal. Today 70, 139 (2001)

    Article  Google Scholar 

  33. C. Ararat Ibarguen, A. Mosquera, R. Parra, M.S. Castro, J.E. Rodriguez-Paez, Mater. Chem. Phys. 101, 433 (2007)

    Article  Google Scholar 

  34. R. Mishra, P.K. Bajpai, J. Int. Acad. Phys. Sci. 14, 245 (2010)

    Google Scholar 

  35. T. Toupance, H. Elhamzaoui, B. Jousseaume, H. Riague, I. Sadeddin, G. Campet, J. Brötz, Chem. Mater. 18, 6364 (2006)

    Article  Google Scholar 

  36. JCPDS-International Center for Diffraction Data. Pattern No 41-1445 (Cassiterite tin dioxide) (1998)

  37. S. Tian, X. Ding, D. Zeng, S. Zhang, C. Xie, Sens. Actuators B 186, 640 (2013)

    Article  Google Scholar 

  38. L. Sun, Y. Shi, Z. He, B. Li, J. Liu, Synth. Met. 162, 2183 (2012)

    Article  Google Scholar 

  39. Y.C. Wu, W. Hamd, E. Thune, A. Boulle, C. Rochas, R. Guinebretière, J. Non Cryst. Solids 355, 951 (2009)

    Article  Google Scholar 

  40. G. Sarala Devi, S.K. Masthan, M. Shakuntala, V.J. Rao, J. Mater. Sci. Mater. Electron. 10, 545 (1999)

    Article  Google Scholar 

  41. D.L. Chen, L. Gao, J. Colloid Interface Sci. 278, 137 (2004)

    Article  Google Scholar 

  42. L.L. Li, W.M. Zhang, Q. Yuan, Z.X. Li, C.J. Fang, L.D. Sun, L.J. Wan, C.H. Yan, Cryst. Growth Des. 8, 4165 (2008)

    Article  Google Scholar 

  43. W. Xing, F. Li, Z.F. Yan, G.Q. Lu, J. Power Sources 134, 324 (2004)

    Article  Google Scholar 

  44. S. Tian, X. Ding, D. Zeng, S. Zhang, C. Xie, Sens. Actuators B 186, 640 (2013)

    Article  Google Scholar 

  45. M.A. Nazarkovsky, V.M. Gun′ko, V.I. Zarko, E. Skwarek, J. Skubiszewska-Zięba, R. Leboda, W. Janusz, J. Chem. Technol. Metall. 48, 373 (2013)

    Google Scholar 

  46. L. Xi, D. Qian, X. Tang, Ch. Chen, Mater. Chem. Phys. 108, 232 (2008)

    Article  Google Scholar 

  47. H. Yuan, J. Xu, Int. J. Chem. Eng. Appl. 1, 3 (2010)

    Google Scholar 

  48. K.S. Rao, D.M. Prasad, P.M. Krishna, B. Tilak, KCh. Varadarajulu, J. Mater. Sci. Eng. B 141, 133 (2006)

    Google Scholar 

  49. R. Bargougui, A. Oueslati, G. Schmerber, C. Ulhaq-Bouillet, S. Colis, F. Hlel, S. Ammar, A. Dinia, J. Mater. Sci. Mater. Electron. 25, 2066 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Toupance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltan, W.B., Mbarki, M., Ammar, S. et al. Textural, structural and electrical properties of SnO2 nanoparticles prepared by the polyol method. J Mater Sci: Mater Electron 26, 1612–1618 (2015). https://doi.org/10.1007/s10854-014-2584-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2584-9

Keywords

Navigation