Skip to main content
Log in

Facile synthesis of Ag@SiO2 core–shell nanowires on large scale

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

One dimensional silver nanowires including core–shell nanostructures have attracted extensive attention for important application in catalysis, electronics, photonics, and information storage. Here, we first report a facile solution process for fabrication of Ag/SiO2 core–shell nanowires. The phase and size of the samples were investigated by X-ray power diffraction analyses, field-emission scanning electron microscopy and transmission electron microscopy; respectively. The Ag/SiO2 core–shell nanowires are with 200–300 nm in diameter, tens of micrometers in length and several nanometers for the shell thickness. The detailed reaction and shape evolution process of core–shell structures have been studied. This facile solution approach would be extended to produce new hybrid materials with potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F.C. Suk, C.P. Suh, E.I.D. Freda, Mater. Lett. 65, 2673 (2011)

    Article  Google Scholar 

  2. J.Y. Woo, K.K. Kim, J. Lee, J.T. Kim, C.S. Han, Nanotechnology 25, 285203 (2014)

    Article  Google Scholar 

  3. L.N. Cui, Z.J. Du, W. Zou, H.Q. Li, C. Zhang, RSC Adv. 4, 27591 (2014)

    Article  Google Scholar 

  4. L.J. Borthakur, S. Sharma, S.K. Dolui, J. Mater. Sci. Mater. Electron. 22, 949 (2011)

    Article  Google Scholar 

  5. M.X. Song, A. Bouhelier, P. Bramant, J. Sharma, D. Erik, D.G. Zhang, ACS Nano 5, 5874 (2011)

    Article  Google Scholar 

  6. A.E. Kandjani, A.I. Bhant, I.L. Kyratzis, V. Bansal, Adv. Funct. Mater. 24, 1047 (2014)

    Article  Google Scholar 

  7. M.S. Chen, I.Y. Phang, M.R. Lee, K.W. Yang, X.Y. Ling, Langmuir 29, 7061 (2013)

    Article  Google Scholar 

  8. X.H. Liu, Y.Y. Cao, H.Y. Peng, H.S. Qian, X.Y. Yang, H.B. Zhang, CrystEngComm 16, 2365 (2014)

    Article  Google Scholar 

  9. D.P. Chen, X.L. Qiao, X.L. Qiu, J.G. Chen, R.Z. Jiang, J. Mater. Sci. Mater. Electron. 22, 6 (2011)

    Article  Google Scholar 

  10. M.L. Sun, W.Y. Fu, H.B. Yang, Y.M. Sui, B. Zhao, G.C. Yin, Q. Li, Electrochem. Commun. 13, 1324 (2011)

    Article  Google Scholar 

  11. B. Cheng, Y. Le, J.G. Yu, J. Hazard. Mater. 177, 971 (2010)

    Article  Google Scholar 

  12. P. Ramasamy, D.M. Seo, S.H. Kim, J. Kim, J. Mater. Chem. 22, 11651 (2012)

    Article  Google Scholar 

  13. X. Guo, W. Ye, H.Y. Sun, Q. Zhang, J. Yang, Nanoscale 5, 12582 (2013)

    Article  Google Scholar 

  14. Q. Zhang, W.Y. Li, C. Moran, J. Zeng, J.Y. Chen, L.P. Wen, Y.N. Xia, J. Am. Chem. Soc. 132, 11372 (2010)

    Article  Google Scholar 

  15. S.H. Yu, X.J. Cui, L. Li, K. Li, B. Yu, M. Antonietti, H. Colfen, Adv. Mater. 16, 1636 (2004)

    Article  Google Scholar 

  16. M. Tsuji, N. Muyamae, S. Lim, K. Kimura, X. Zhang, S. Hikino, M. Nishio, Cryst. Growth Des. 6, 1801 (2006)

    Article  Google Scholar 

  17. J. Zhu, Y. Zhu, J. Phys. Chem. B 100, 8593 (2006)

    Article  Google Scholar 

  18. Y. Yin, Y. Lu, Y. Sun, Y.N. Xia, Nano Lett. 2, 427 (2002)

    Article  Google Scholar 

  19. H.Y. Qin, L.B. Jiang, Y.C. He, J.B. Liu, K. Cao, J. Wang, Y. He, H.L. Ni, H.Z. Chi, Z.G. Ji, J. Mater. Chem. A 1, 15323 (2013)

    Article  Google Scholar 

  20. L.M. Chen, J.M. Chabu, R.L. Jin, J.N. Xiao, RSC Adv. 3, 26102 (2013)

    Article  Google Scholar 

  21. S. Pandey, S.K. Pandey, V. Parashar, G.K. Mehrotra, A.C. Pandey, J. Mater. Chem. 21, 17154 (2011)

    Article  Google Scholar 

  22. L.B. Luo, S.H. Yu, H.S. Qian, T. Zhou, J. Am. Chem. Soc. 127, 2822 (2005)

    Article  Google Scholar 

  23. H. Eom, J.Y. Jung, Y. Shin, S. Kim, J.H. Choi, E. Lee, J.H. Jeong, I. Park, Nanoscale 6, 226 (2014)

    Article  Google Scholar 

  24. A.S. James, L.S. Rebecca, Y.S. Michael, D.K. Christine, Langmuir 23, 11334 (2007)

    Article  Google Scholar 

  25. Q.Q. Xu, Y.L. Ma, X. Gang, J.Z. Yin, A.Q. Wang, J.J. Gao, J. Supercrit. Fluid 92, 100 (2014)

    Article  Google Scholar 

  26. W.Q. Wang, L.C. Lu, W.J. Cai, Z.R. Chen, J. Appl. Polym. Sci. 129, 2377 (2013)

    Article  Google Scholar 

  27. G. Zhu, D.P. Chen, J. Mater. Sci. Mater. Electron. 23, 2035 (2012)

    Article  Google Scholar 

  28. H.S. Qian, L.B. Luo, J.Y. Gong, S.H. Yu, W.T. Li, L.F. Fei, Cryst. Growth Des. 6, 607 (2006)

    Article  Google Scholar 

  29. Y.G. Sun, B. Gates, B. Mayers, Y.N. Xia, Nano Lett. 2, 165 (2002)

    Article  Google Scholar 

  30. G.M. Chapman, H. Bai, C. Li, G.Q. Shi, Mater. Chem. Phys. 14, 120 (2009)

    Article  Google Scholar 

  31. Z.W. Deng, M. Chen, L.M. Wu, J. Phys. Chem. C 111, 11692 (2007)

    Article  Google Scholar 

  32. P. Jiang, S.Y. Li, S.S. Xie, Y. Gao, L. Song, Chem. Eur. J. 10, 4817 (2004)

    Article  Google Scholar 

  33. B. Liu, H.C. Zeng, Small 1, 566 (2005)

    Article  Google Scholar 

  34. W.L. Yang, J.J. Li, Y.J. Zhong, H.S. Qian, Z.Q. Li, Y. Hu, CrystEngComm 15, 2598 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financial supported in part by the National Science Foundation of China (Grants No. 21101140, 21471043, 21273203), the Fundamental Research Funds for the Central Universities (2013HGCH0001, 2013HGXK0022, 2013HGCH0015) and the Zhejiang Provincial Natural Science Foundation of China (Grants No. LQ12C05001). F. Li and J. Chen contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Ling Zhao, Zhengquan Li or Haisheng Qian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 395 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Zhao, YL., Dai, W. et al. Facile synthesis of Ag@SiO2 core–shell nanowires on large scale. J Mater Sci: Mater Electron 26, 1602–1607 (2015). https://doi.org/10.1007/s10854-014-2582-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2582-y

Keywords

Navigation