Skip to main content
Log in

TiO2/porous silicon nanocomposite passivation coating for mc-Si wafers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work reports on passivation effect of solar-grade multicrystalline Si (mc-Si) using a TiO2/porous silicon double coating. For this purpose, TiO2 nanoparticles were deposited onto porous silicon (PS)/mc-Si using pulsed laser ablation of titanium target. The structural and optoelectronic properties of the TiO2/PS treated mc-Si substrates were investigated by X-ray diffraction, Raman spectroscopy, optical spectrometry, photo-conductance and photoluminescence (PL). It was found that the minority carrier lifetime (τ eff) of the mc-Si wafer could enhance at a nominal thickness of the TiO2 film (nanoparticle sizes). This was attributed to a surface passivation of the mc-Si wafer via TiO2-passivation of the PS film, whose PL intensity improves consequently. An optimal TiO2 thickness of 80 nm was found to give the highest PL intensity and an enhancement of the minority carrier lifetime from 5 µs for untreated mc-Si wafer to about 391 µs for a TiO2/PS treated wafers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.C. Hsu, Y.S. Lu, J.Y. Chyan, J.A. Yeh, Int. J. Photoenergy (2012). doi:10.1155/2012/197514

  2. G. Dingemans, M.M. Mandoc, S. Bordihn, M.C.M. van de Sanden, W.M.M. Kessels, Appl. Phys. Lett. 98, 222102 (2011)

    Article  Google Scholar 

  3. M. Ben Rabha, W. Dimassi, M. Gaidi, H. Ezzaouia, B. Bessais, Phys. Status Solidi 8, 1874 (2011)

    Article  Google Scholar 

  4. M. Kaminski, K. Bass, G. Claudio, J.M. Walls, Appl. Surf. Sci. 301, 51–55 (2014)

    Article  Google Scholar 

  5. A. Angelescu, I. Kleps, M. Miu, M. Simion, T. Ignat, S. Petrescu, N. Moldovan, C. Paduraru, A. Raducanu, Rev. Adv. Mater. Sci. 5, 440 (2003)

    Google Scholar 

  6. K.J. Kim, G.S. Kim, J.S. Hong, T.S. Kang, D. Kim, Sol. Energy 64, 61 (1998)

    Article  Google Scholar 

  7. V.Y. Yerokhov, I.L. Melnyk, Renew. Sustain. Energy Rev. 3, 291 (1999)

    Article  Google Scholar 

  8. A. Hajjaji, M. Ben Rabha, N. Janene, M. Gaidi, B. Bessais, M.S. El Khakani, Appl. Surf. Sci. 258(20), 8046–8048 (2012)

    Article  Google Scholar 

  9. C.H. Liang, Y. Shimizu, T. Sasaki, N. Koshizaki, Appl. Phys. A 80, 819 (2005)

    Article  Google Scholar 

  10. M.Z. Rahman, Int. J. Renew. Energy Res. 2(1), 117 (2012)

  11. L. Remachea, E. Fourmonda, A. Mahdjoubb, J. Dupuisa, M. Lemitia, Mater. Sci. Eng., B 176, 45–48 (2011)

    Article  Google Scholar 

  12. M. Ben Rabha, M. Saadoun, M.F. Boujmil, B. Bessais, H. Ezzaouia, R. Bennaceur, Appl. Surf. Sci. 252, 488–493 (2005)

    Article  Google Scholar 

  13. M. Gaidi, M. Chaker, P.F. Ndione, R. Morandotti, B. Bessaïs, J. Appl. Phys. 101, 063107 (2007)

    Article  Google Scholar 

  14. A. Guinier, Théorie et Technique de la Radiocristallographie (Dunod, Paris, 1964), p. 462

    Google Scholar 

  15. P.A. Temple, C.E. Hathaway, Multiphonon Raman spectrum of silicon. Phys. Rev. B 7, 3685 (1973)

    Article  Google Scholar 

  16. D.B. Dimitrov, I. Savationova, E. Liarokapis, Opto-Electron. Rev. 6(4), 295–298 (1998)

    Google Scholar 

  17. M. Fusia, E. Maccallini, T. Caruso, C.S. Casari, A. Li Bassi, C.E. Bottani, P. Rudolf, K.C. Prince, R.G. Agostino, Surf. Sci. 605, 333–340 (2011)

    Article  Google Scholar 

  18. L.G.J. De Haart, G. Blasse, J. Solid State Chem. 61, 135 (1986)

    Article  Google Scholar 

  19. Z. Yuan, L. Zhang, Chem. J. Chin. Univ. (in Chi-nese) 20, 1007 (1999)

    Google Scholar 

  20. Y. Li, C. Song, Y. Wang, Y. Wei, Y. Wei, Y. Hu, Luminescence 22, 540 (2007)

    Article  Google Scholar 

  21. D.C. Pan, N.N. Zhao, Q. Wang, S. Jiang, X. Ji, L. An, Adv. Mater. 17, 176 (2005)

    Article  Google Scholar 

  22. N. Serpone, D. Lawless, R. Khairutdinovt, J. Phys. Chem. 99, 16646–16654 (1995)

    Article  Google Scholar 

  23. Y. Lei, L.D. Zhang, G.W. Meng, G.H. Li, X.Y. Zhang, C.H. Liang, W. Chen, S.X. Wang, Appl. Phys. Lett. 78, 1125 (2001)

    Article  Google Scholar 

  24. M.H. Brodsky, M. Cardona, J.J. Cuomo, Phys. Rev. B 16, 3556 (1997)

  25. Z.H. Xiong, L.S. Liao, S. Yuan, Z.R. Yang, X.M. Ding, X.Y. Hou, Thin Solid Films 388, 271 (2001)

    Article  Google Scholar 

  26. R. Ricchiardi, A. Damin, S. Bordiga, C. Lamberti, G. Spano, F. Rivetti, A. Zecchina, J. Am. Chem. Soc. 123, 11409 (2001)

    Article  Google Scholar 

  27. S. Klein, S. Thorimbert, W.F. Meier, J. Catal. 163, 476 (1996)

    Article  Google Scholar 

  28. L. Derbali, H. Ezzaouia, Appl. Surf. Sci. 271, 234–239 (2013)

    Article  Google Scholar 

  29. N. Janene, A. Hajjaji, M. Ben Rabha, B. Bessais, M.A. El Khakani, M. Gaidi. Sciencejet C 1(12), (2012)

  30. K.J. Kim, G. Kim, J. Suphong, B. Bessais, T.K.D. Kim, Sol. Energy 64, 61–66 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gaidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janene, N., Salem, M., Ben Rabha, M. et al. TiO2/porous silicon nanocomposite passivation coating for mc-Si wafers. J Mater Sci: Mater Electron 26, 1585–1590 (2015). https://doi.org/10.1007/s10854-014-2579-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2579-6

Keywords

Navigation