Skip to main content
Log in

Thermally stable BaTiO3–Bi(Zn0.75W0.25)O3 solid solution with high relative permittivity and low dielectric loss

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(1 − x)BaTiO3xBi(Zn0.75W0.25)O3 [BT–BZW, 0 ≤ x ≤ 0.2] solid solutions were fabricated via a conventional solid-state reaction method. The relationships among compositions, crystal structures, and dielectric properties were investigated. X-ray diffraction patterns showed that a phase transformation from tetragonal to pseudocubic was observed at 0.03 ≤ x ≤ 0.1. Raman spectra analysis also illustrated that the long-range ferroelectric order is disrupted from these compositions. Dielectric data showed that as the BZW addition was small (0.01 ≤ x ≤ 0.04), the magnitude of permittivity maxima decreased, and the Curie temperature was almost irrespective of BZW content (x). While the dielectric temperature stability and relative permittivity of BT below the Curie temperature were effectively improved. In particular, the ceramic with x = 0.04 possesses the dielectric properties with high permittivity (~3,000), low dielectric loss (<3 %) and dielectric temperature stability (±15 %) in the temperature range of 25–125 °C, indicating this ceramic satisfies the requirement of EIA X7R specifications. Especially for x = 0.2, the variations of Δε/ε100 °C is around ±15 % over a wide temperature range from 100 to 400 °C, suggesting potential usage at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P.S. Dobal, A. Dixit, R.S. Katiyar, Z. Yu, R. Guo, A.S. Bhalla, J. Appl. Phys. 89, 8085–8091 (2001)

    Article  Google Scholar 

  2. N. Baskaran, A. Ghule, C. Bhongale, R. Murugan, H. Chang, J. Appl. Phys. 91, 10038–10043 (2002)

    Article  Google Scholar 

  3. T.A. Jain, K.Z. Fung, S. Hsiao, J. Chan, J. Eur. Ceram. Soc. 30, 1469–1476 (2010)

    Article  Google Scholar 

  4. J. Chen, H.M. Chan, M.P. Harmer, J. Am. Ceram. Soc. 72, 593 (1989)

    Article  Google Scholar 

  5. G.H. Haertling, J. Am. Ceram. Soc. 82, 797–818 (1999)

    Article  Google Scholar 

  6. B.A. Tuttle, D.A. Payne, Ferroelectrics 37, 603–606 (1981)

    Article  Google Scholar 

  7. G. Singh, V.S. Tiwari, J. Alloys Compd. 523, 30–35 (2012)

    Article  Google Scholar 

  8. L.H. Luo, H.B. Chen, Y.J. Zhu, W.P. Li, H.S. Luo, Y.P. Zhang, J. Alloys Compd. 509, 8149–8152 (2011)

    Article  Google Scholar 

  9. D. Bochenek, R. Skulski, P. Wawrzała, D. Brzezin´ska, J. Alloys Compd. 509, 5356–5363 (2011)

    Article  Google Scholar 

  10. S. Wongsaenmai, S. Ananta, R. Yimnirun, J. Alloys Compd. 474, 241–245 (2009)

    Article  Google Scholar 

  11. J.Y. Xu, M. Jin, J. Tong, M.L. Shi, X.J. Wu, B.L. Lu, L.Q. Luo, J. Alloys Compd. 449, 36–39 (2008)

    Article  Google Scholar 

  12. S. Wongsaenmai, X.L. Tan, S. Ananta, R. Yimnirun, J. Alloys Compd. 454, 331–339 (2008)

    Article  Google Scholar 

  13. P. Baettig, C.F. Schelle, R. Lesar, Chem. Mater. 17, 1376–1380 (2005)

    Article  Google Scholar 

  14. B.P. Burton, E. Cockayne, U.V. Waghmare, Phys. Rev. B 72, 064113 (2005)

    Article  Google Scholar 

  15. H.L. Du, W.C. Zhou, F. Luo, J. Am. Ceram. Soc. 91, 2903–2909 (2008)

    Article  Google Scholar 

  16. R.E. Eitel, C.A. Randall, T.R. Shrout, Jpn. J. Appl. Phys. 41, 5999–6002 (2001)

    Article  Google Scholar 

  17. Y.Q. Huang, L.F. Gao, Y. Hu, H.Y. Du, Mater. Electron. 18, 605–609 (2007)

    Article  Google Scholar 

  18. F. He, X.L. Chen, J. Chen, Y.L. Wang, H.F. Zhou, L. Fang, J. Mater. Sci. Mater. Electron. 24, 4346–4350 (2013)

    Article  Google Scholar 

  19. Y.L. Wang, X.L. Chen, H.F. Zhou, L. Fang, L.J. Liu, H. Zhang, J. Mater. Sci. Mater. Electron. 24, 770 (2013)

    Article  Google Scholar 

  20. Y.L. Wang, X.L. Chen, C.X. Su, Y.M. Huang, H.F. Zhou, L. Fang, L.J. Liu, J. Mater. Sci. Mater. Electron. 24, 2873–2879 (2013)

    Article  Google Scholar 

  21. R. Koduri, M. Lopez, J. Mater. Sci. Mater. Electron. 19, 669–675 (2008)

    Article  Google Scholar 

  22. C.C. Huang, D.P. Cann, J. Appl. Phys. 104, 024117 (2008)

    Article  Google Scholar 

  23. S. Mr, D. Pk, Appl. Phys. Lett. 86, 262905 (2005)

    Article  Google Scholar 

  24. B. Xiong, H. Hao, S.J. Zhang, H.X. Liu, M.H. Cao, J. Am. Ceram. Soc. 94, 3412–3417 (2011)

    Article  Google Scholar 

  25. J. Chen, X.L. Tan, W. Jo, J. Rödel, J. Appl. Phys. 106, 034109 (2009)

    Article  Google Scholar 

  26. T. Leist, J. Chen, W. Jo, E. Aulbach, J. Suffner, J. Röde, J. Am. Ceram. Soc. 95, 711–715 (2012)

    Article  Google Scholar 

  27. C. Sm, S. Cj, S. Tr, R. Ca, J. Appl. Phys. 98, 034108 (2005)

    Article  Google Scholar 

  28. Y.L. Wang, X.L. Chen, H.F. Zhou, L. Fang, L.J. Liu, H. Zhang, J. Alloys Compd. 551, 365–369 (2013)

    Article  Google Scholar 

  29. J. Chen, X.L. Chen, F. He, Y.L. Wang, H.F. Zhou, L. Fang, J. Electron. Mater. 43, 1112–1118 (2014)

    Article  Google Scholar 

  30. D.M. Stein, M.R. Suchomel, P.K. Daviesa, Appl. Phys. Lett. 89, 132907 (2006)

    Article  Google Scholar 

  31. K. Suzuki, K. Kijima, J. Mater. Sci. 40, 1289–1292 (2005)

    Article  Google Scholar 

  32. R. Farhi, M. El Marssi, A. Simon, J. Ravez, Eur. Phys. J. B 9, 599–604 (1999)

    Article  Google Scholar 

  33. A. Scalabrin, A.S. Chaves, D.S. Shim, S.P.S. Porto, Phys. Status Solidi. B Basic. 79, 731–742 (1977)

    Article  Google Scholar 

  34. D.Y. Lu, X.Y. Sun, M. Toda, J. Phys. Chem. Solids 68, 650–664 (2007)

    Article  Google Scholar 

  35. J. Kreisel, P. Bouvier, M. Maglione, B. Dkhil, A. Simon, Phys. Rev. B 69, 092104 (2004)

    Article  Google Scholar 

  36. S.Y. Zheng, E. Odendo, L.J. Liu, D.P. Shi, Y.M. Huang et al., J. Appl. Phys. 113, 094102 (2013)

    Article  Google Scholar 

  37. V.A. Isupov, Phys. Status Solidi A 181, 211 (2000)

    Article  Google Scholar 

  38. R.J. Bratton, T.Y. Tien, J. Am. Ceram. Soc. 50, 90 (1967)

    Article  Google Scholar 

  39. L. Wang, J.H. Cho, Y.S. Sung, Ferroelectrics 380, 177–182 (2009)

    Article  Google Scholar 

  40. H. Ogihara, C.A. Randall, S. Trolier-McKinstry, J. Am. Ceram. Soc. 92, 1719–1724 (2009)

    Article  Google Scholar 

  41. N.O. Birge, Y.H. Jeong, S.R. Nagel, S. Bhattacharya, S. Susman, Phys. Rev. B 30, 2306–2308 (1984)

    Article  Google Scholar 

  42. P. He, K. Deguchi, M. Hirokane, E. Nakamura, J. Phys. Soc. Jpn. 59, 1835–1840 (1990)

    Article  Google Scholar 

  43. V. Bobnar, J. Holc, M. Hrovat, M. Kosec, J. Appl. Phys. 101, 074103 (2007)

    Article  Google Scholar 

  44. W. Heywang, Ferroelectrics 49, 3 (1983)

    Article  Google Scholar 

  45. D.Y. Lu, Y. Yue, X.Y. Sun, J. Alloys Compd. 586, 136–141 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China (Nos. 11364012, 51102058, 11464009, and 50962004), Natural Science Foundation of Guangxi (Nos. 2013GXNSFAA019291, 2014GXNSFAA118326, and 2014GXNSFAA118312), Project of Guangxi Scientific Research and Technical Development (No. 1348020-11), Research start-up funds Doctor of Guilin University of Technology (Nos. 002401003281 and 002401003282).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanfu Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Chen, J., Ma, D. et al. Thermally stable BaTiO3–Bi(Zn0.75W0.25)O3 solid solution with high relative permittivity and low dielectric loss. J Mater Sci: Mater Electron 26, 1413–1418 (2015). https://doi.org/10.1007/s10854-014-2555-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2555-1

Keywords

Navigation