Skip to main content

Advertisement

Log in

Single-crystalline rutile TiO2 nanorod arrays with high surface area for enhanced conversion efficiency in dye-sensitized solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Vertically ordered single-crystalline TiO2 nanorod arrays (NRAs) grown directly on transparent conductive substrates are of considerable interest for overcoming the limitations of current nanoparticle-based dye-sensitized solar cells (DSSCs) with the disordered network structure. However, the synthesis of such structures with high internal surface area is still challenging and desirable for highly efficient DSSCs. Herein, by introduction of a TiO2 nanocrystal seed layer, growth of long single-crystalline rutile TiO2 NRAs with high surface area has been demonstrated by a mild hydrothermal method combined with a chemical etching route. The chemical etching treatment developed here can effectively enlarge the surface area of rutile TiO2 NRAs for more dye-loading by splitting of original TiO2 nanorods into secondary nanowires with a reduced diameter. Accordingly, a DSSC constructed by 7 h-etched rutile TiO2 NRAs exhibits markedly enhanced efficiency of 4.69 %, compared to that of 1.30 % in the DSSCs based on un-etched TiO2 NRAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Yella, H.W. Lee, H.N. Tsao, C.Y. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Gratzel, Science 334, 629 (2011)

    Article  Google Scholar 

  2. H.W. Chen, C.P. Liang, H.S. Huang, J.G. Chen, R. Vittal, C.Y. Lin, K.C.W. Wu, K.C. Ho, Chem. Commun. 47, 8346 (2011)

    Article  Google Scholar 

  3. B. O’regan, M. Grätze, Nature 353, 737 (1991)

    Article  Google Scholar 

  4. O.K. Varghese, M. Paulose, C.A. Grimes, Nat. Nanotechnol. 4, 592 (2009)

    Article  Google Scholar 

  5. B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2009)

    Article  Google Scholar 

  6. Y.P. Liu, S.R. Wang, Z.Q. Shan, X.G. Li, J.H. Tian, Y.M. Mei, H.M. Ma, K.L. Zhu, Electrochim. Acta 60, 422 (2012)

    Article  Google Scholar 

  7. J. Liang, G.M. Zhang, H.R. Xia, W.T. Sun, RSC Adv. 4, 12649 (2014)

    Article  Google Scholar 

  8. T.S. Eom, K.H. Kim, C.W. Bark, H.W. Choi, J. Nanosci. Nanotechnol. 14, 7705 (2014)

    Article  Google Scholar 

  9. G. Arthi, J. Archana, M. Navaneethan, S. Ponnusamy, Y. Hayakawa, C. Muthamizhchelvan, Scr. Mater. 68, 396 (2013)

    Article  Google Scholar 

  10. J. Navas, E. Guillen, R. Alcantara, C. Fernandez-Lorenzo, J. Martin-Calleja, G. Oskam, J. Idigoras, T. Berger, J.A. Anta, J. Phys. Chem. Lett. 2, 1045 (2011)

    Article  Google Scholar 

  11. X.J. Feng, K. Zhu, A.J. Frank, C.A. Grimes, T.E. Mallouk, Angew. Chem. Int. Edit. 51, 2727 (2012)

    Article  Google Scholar 

  12. Y.J. Hwang, C. Hahn, B. Liu, P.D. Yang, ACS Nano 6, 5060 (2012)

    Article  Google Scholar 

  13. H.E. Wang, Z.H. Chen, Y.H. Leung, C.Y. Luan, C.P. Liu, Y.B. Tang, C. Yan, W.J. Zhang, J.A. Zapien, I. Bello, Appl. Phys. Lett. 96, 263104 (2010)

    Article  Google Scholar 

  14. L. Zhao, J. Li, Y. Shi, S.M. Wang, J.H. Hu, B.H. Dong, H.B. Lu, P. Wang, J. Alloy. Compd. 575, 168 (2013)

    Article  Google Scholar 

  15. A. Kumar, A.R. Madaria, C.W. Zhou, J. Phys. Chem. C 114, 7787 (2010)

    Article  Google Scholar 

  16. X.G. Peng, L. Manna, W.D. Yang, E.S. Wickham, A. Kadavanich, A.P. Alivisatos, Nature 404, 59 (2000)

    Article  Google Scholar 

  17. M. Adachi, Y. Murata, J. Takao, J.T. Jiu, M. Sakamoto, F.M. Wang, J. Am. Chem. Soc. 126, 14943 (2004)

    Article  Google Scholar 

  18. A. Kumar, A.R. Madaria, C.W. Zhou, J. Phys. Chem. C 114, 7787 (2010)

    Article  Google Scholar 

  19. H. Cheng, J. Ma, Z. Zhao, L. Qi, Chem. Mater. 7, 663 (1995)

    Article  Google Scholar 

  20. S.L. Cheng, W.Y. Fu, B.Y. Hai, L.N. Zhang, J.W. Ma, H. Zhao, M.L. Sun, L.H. Yang, J. Phys. Chem. C 116, 2615 (2012)

    Article  Google Scholar 

  21. W.X. Guo, C. Xu, X. Wang, S.H. Wang, C.F. Pan, C.J. Lin, Z.L. Wang, J. Am. Chem. Soc. 134, 4437 (2012)

    Article  Google Scholar 

  22. Y.L. Xie, Z.X. Li, Z.G. Xu, H.L. Zhang, Electrochem. Commun. 13, 788 (2011)

    Article  Google Scholar 

  23. G.D. Rajmohan, X.J. Dai, T. Tsuzuki, P.R. Lamb, J. Du Plessis, F.Z. Huang, Y.B. Cheng, Thin Solid Films 545, 521 (2013)

    Article  Google Scholar 

  24. N.E. Motl, A.F. Smith, C.J. DeSantis, S.E. Skrabalak, Chem. Soc. Rev. 43, 3823 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11105047). This work was also financially supported by the National Natural Science Foundation of China (51102087) and 973 Program (2010CB234606).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongbing Lu or Shimin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, T., Lu, H., Dong, B. et al. Single-crystalline rutile TiO2 nanorod arrays with high surface area for enhanced conversion efficiency in dye-sensitized solar cells. J Mater Sci: Mater Electron 26, 1332–1337 (2015). https://doi.org/10.1007/s10854-014-2543-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2543-5

Keywords

Navigation