Advertisement

Fabrication and structural characterization of bismuth niobate thin films grown by chemical solution deposition

  • L. F. Goncalves
  • J. A. Cortés
  • M. G. A. Ranieri
  • F. B. Destro
  • M. A. Ramirez
  • A. Z. Simões
Article

Abstract

Bi3NbO7 (BNO) thin films were deposited on Pt/TiO2/SiO2/Si (100) substrates at room temperature from the polymeric precursor method. X-ray powder diffraction and transmission electron microscopy were used to investigate the formation characteristics and stability range of the tetragonal modification of a fluorite-type solid solution. The results showed that this tetragonal, commensurately modulated phase forms through the intermediate formation of the incommensurately modulated cubic fluorite phase followed by the incommensurate-commensurate transformation. The 200 nm thick BNO films exhibit crystalline structure, a dielectric constant of 170, capacitance density of 200 nF/cm2, dielectric loss of 0.4 % at 1 MHz, and a leakage current density of approximately 1 × 10−7 A/cm2 at 5 V. They show breakdown strength of about 0.25 MV/cm. The leakage mechanism of BNO film in high field conduction is well explained by the Schottky and Poole–Frenkel emission models. The 200 nm thick BNO film is suitable for embedded decoupling capacitor applications directly on a printed circuit board.

Keywords

Dielectric Loss Tetragonal Phase Fluorite Structure Ferroelectric Thin Film Chemical Solution Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The financial support of this research project by the Brazilian research funding agencies CNPq and FAPESP is gratefully acknowledged. We also like to thanks José de los Santos Guerra from UFU for dielectric facilities and Marco Cantoni from EPFL from TEM analyses.

References

  1. 1.
    W.J. Borland, S. Ferguson, Embedded passive components in printed wiring boards: a technology review, CircuiTree March (2001)Google Scholar
  2. 2.
    M.R. Gongora-Rubio, P. Espinoza-Vallejos, L. Sola-Laguna, J.J. Santiago-Aviles, Overview of low temperature co-fired ceramics tape technology for meso-system technology (MsST). Sens. Actuators, A 89, 222–241 (2001)CrossRefGoogle Scholar
  3. 3.
    A.A. Maradudin, D.L. Mills, Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness. Phys. Rev. B 11, 1392–1415 (1975)CrossRefGoogle Scholar
  4. 4.
    R.L. Moreira, F.M. Matinaga, U. Pirnat, D. Suvorov, A. Dias, Optical phonon characteristics of incommensurate and commensurate modulated phases of Bi3NbO7 ceramics. J. Appl. Phys. 103, 094108-1–095108-7 (2008)CrossRefGoogle Scholar
  5. 5.
    S.N. Ng, Y.P. Tan, Y.H. Taufiq-Yap, Mechanochemical synthesis and characterization of bismuth-niobium oxide ion conductors. J. Phys. Sci. 20, 75–86 (2009)Google Scholar
  6. 6.
    B.H. Park, S.J. Hyun, S.D. Bu, T.W. Noh, J. Lee, H.D. Kim, T.H. Kim, W. Jo, Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12. Appl. Phys. Lett. 74, 1907–1909 (1999)CrossRefGoogle Scholar
  7. 7.
    X.P. Wang, Z.J. Cheng, Q.F. Fang, Phase transition kinetics in Bi3NbO7 evaluated by in situ isothermal conductivity measurements. Chin. Phys. Lett. 24, 1013–1016 (2007)CrossRefGoogle Scholar
  8. 8.
    D. Zhou, H. Wang, X. Yao, L. Pang, Sintering behavior and microwave dielectric properties of Bi3(Nb1-xTax)O7 solid solutions. Mat. Chem. Phys. 110, 212–215 (2008)CrossRefGoogle Scholar
  9. 9.
    D. Zhou, H. Wang, X. Yao, Sintering behavior and dielectric properties of Bi3NbO7 ceramics prepared by mixed oxides and high-energy ball-milling method. J. Am. Ceram. Soc. 90, 327–329 (2007)CrossRefGoogle Scholar
  10. 10.
    H.C. Ling, M.F. Yan, W.W. Rhodes, High dielectric constant and small temperature coefficient bismuth based dielectric compositions. J. Mater. Res. 5, 1752–1762 (1990)CrossRefGoogle Scholar
  11. 11.
    H. Kagata, T. Inoue, J. Kato, I. Kameyama, Low-fire bismuth-based dielectric ceramics for microwave use. Jpn. J. Appl. Phys. 31, 3152–3155 (1992)CrossRefGoogle Scholar
  12. 12.
    A. Mergen, W.E. Lee, Crystal chemistry, thermal expansion and dielectric properties of (Bi1.5Zn0.5)(Sb1.5Zn0.5)O7 pyrochlore. Mater. Res. Bull. 32, 175–189 (1997)CrossRefGoogle Scholar
  13. 13.
    Roberto L. Moreira, Franklin M. Matinaga, Urša Pirnat, Danilo Suvorov, Anderson Dias, Optical phonon characteristics of incommensurate and commensurate modulated phases of Bi3NbO7 ceramics. J. Appl. Phys. 103, 094108–094110 (2008)CrossRefGoogle Scholar
  14. 14.
    H. Wang, X. Yao, Structure and dielectric properties of pyrochlore-fluorite biphase ceramics in the Bi2O3–ZnO–Nb2O5 system. J. Mater. Res. 16, 83–87 (2001)CrossRefGoogle Scholar
  15. 15.
    A.Z. Simões, M.A. Ramirez, C.S. Riccardi, E. Longo, J.A. Varela, Ferroelectric properties and leakage current characteristics of Bi3.25La0.75Ti3O12 thin films prepared by the polymeric precursor method. J. Appl. Phys. 98, 1141031-1-114103-5 (2005)CrossRefGoogle Scholar
  16. 16.
    C.D. Ling, M. Johnson, Modelling, refinement and analysis of the ‘Type III’ Bi2O3-related superstructure in the Bi2O3–Nb2O5 system. J. Solid State Chem. 17, 1838–1846 (2004)CrossRefGoogle Scholar
  17. 17.
    J.W. Lu, S. Stemmer, Low-loss, tunable bismuth zinc niobate films deposited by rf magnetron sputtering. Appl. Phys. Lett. 83, 2411–2413 (2003)CrossRefGoogle Scholar
  18. 18.
    R. Miida, M. Tanaka, A modulated structure in a fluorite-type fast- ion-conductor & #x03B4;-(Bi2O3) (Nb2O5)x. Jpn. J. Appl. Phys. 29, 1132–1138 (1990)CrossRefGoogle Scholar
  19. 19.
    A. Gulino, S. La Delfa, I. Fragalà, R.G. Egdell, Low-temperature stabilization of tetragonal zirconia by bismuth. Chem. Mater. 8, 1287–1291 (1996)CrossRefGoogle Scholar
  20. 20.
    M. Valant, B. Jancar, U. Pirnat, D. Suvorov, The order-disorder transition in Bi2O3-Nb2O5 fluorite-like dielectrics. J. Eur. Cer. Soc. 25, 2829–2834 (2005)CrossRefGoogle Scholar
  21. 21.
    K. Tabata, T. Choso, Y. Nagasawa, The topmost structure of annealed single crystal of LiNbO3. Surf. Sci. 408, 137–145 (1998)CrossRefGoogle Scholar
  22. 22.
    V.V. Atuchin, I.E. Kalabin, V.G. Kesler, N.V. Pervukhina, Nb 3d and O 1 s core levels and chemical bonding in niobates. J. Electron Spectrosc. Relat. Phenom. 142, 129–134 (2005)CrossRefGoogle Scholar
  23. 23.
    J.M. Carlsson, B. Hellsing, H.S. Domingos, Theoretical investigation of the pure and Zn-doped alpha and delta phases of Bi2O3. Phys. Rev. B 65, 205122–205132 (2002)CrossRefGoogle Scholar
  24. 24.
    H.W. Lee, W.J. Lee, S.G. Yoon, Dielectric Bi3NbO7 thin films deposited on polymer substrates by nanocluster deposition for flexible electronic device applications. Electrochem. Solid-State Lett. 12, G23–G26 (2009)CrossRefGoogle Scholar
  25. 25.
    G. Dietz, M.R. Schumacher, R. Waser, S.K. Streiffer, C. Basceri, A.I. Kingon, Leakage currents in Ba0.7Sr0.3TiO3 thin films for ultrahigh-density dynamic random access memories. J. Appl. Phys. 82, 2359–2364 (1997)CrossRefGoogle Scholar
  26. 26.
    J.F. Scott, Y.K. Fang, Device physics of ferroelectric thin-film memories. Jpn. J. Appl. Phys., Part 1. 38, 2272–2274 (1999)Google Scholar
  27. 27.
    A.I. Kingon, S. Srinivasan, Lead zirconate titanate thin films directly on dielectric and piezoelectric applications. Nat. Mater. 4, 233–237 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • L. F. Goncalves
    • 1
  • J. A. Cortés
    • 1
  • M. G. A. Ranieri
    • 1
  • F. B. Destro
    • 1
  • M. A. Ramirez
    • 1
  • A. Z. Simões
    • 1
  1. 1.Faculdade de Engenharia de GuaratinguetáUniv. Estadual Paulista- UnespGuaratinguetáBrazil

Personalised recommendations