Skip to main content
Log in

Temperature-dependent complex impedance, electrical conductivity and dielectric studies of MFe2O4 (M = Mn, Ni, Zn) ferrites prepared by sintering of mechanochemical synthesized nanopowders

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Effect of temperature on electrical and dielectric properties of MFe2O4 (M = Mn, Ni, Zn) ferrites has been investigated in a wide frequency range 100 Hz to 1 MHz. Ferrite ceramics under study were successfully fabricated by a conventional sintering of nanosized powders (1100 °C/2 h) synthesized by soft mechanochemical processing. The structural studies have been carried out using the transmission electron microscopy, X-ray diffraction and scanning electron microscopy. Direct current (DC) resistivity of all samples decreases with increasing temperature, while drift mobility increases, exhibiting the typical semiconductor-like behaviour. Activation energy is calculated by using Arrhenius type resistivity plots. The analysis of experimental data indicates that alternating current (AC) conductivity is mainly due to the hopping mechanism, which is discussed in terms of Maxwell–Wagner two-layer model. The dielectric behaviour is explained by using the mechanism of polarization process, which is correlated to that of electron exchange interaction. Ni-ferrite possesses the lowest value of conductivity of 10−7 (Ωcm)−1, whereas Zn-ferrite has the highest dielectric constant value of 2,641 at frequency of 1 kHz and room temperature. The complex impedance spectroscopy was used to study the effect of microstructures on the electrical properties of sintered ferrites using equivalent circuits. It was found that the electrical resistivity is predominantly controlled by the grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.M. Chavan, M.K. Babrekar, S.S. More, K.M. Jadhav, J. Alloy Compd. 507, 21 (2010)

    Article  Google Scholar 

  2. A.B. Gadkari, T.J. Shinde, P.N. Vasambekar, Mater. Res. Bull. 48, 476 (2013)

    Article  Google Scholar 

  3. A. Sutka, G. Mezinskis, A. Lusis, Phys. Scr. 87, 025601 (2013)

    Article  Google Scholar 

  4. Z.Z. Lazarevic, C. Jovalekic, A. Milutinovic, D. Sekulic, V.N. Ivanovski, A. Recnik, B. Cekic, N.Z. Romcevic, J. Appl. Phys. 113, 187221 (2013)

    Article  Google Scholar 

  5. I.H. Gul, W. Ahmed, A. Maqsood, J. Magn. Magn. Mater. 320, 270 (2008)

    Article  Google Scholar 

  6. C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, Phys. Rev. B 63, 184108 (2001)

    Article  Google Scholar 

  7. E.V. Gopalan, K.A. Malini, S. Saravanan, D.S. Kumar, Y. Yoshida, M.R. Anantharaman, J. Phys. D Appl. Phys. 41, 185005 (2008)

    Article  Google Scholar 

  8. H. Anwar, A. Maqsood, Mater. Res. Bull. 49, 426 (2014)

    Article  Google Scholar 

  9. M. Pavlovic, C. Jovalekic, A.S. Nikolic, D. Manojlovic, N. Sojic, J. Mater. Sci. Mater. Electron. 20, 782 (2009)

    Article  Google Scholar 

  10. S.F. Mansour, M.A. Elkestawy, Ceram. Int. 37, 1175 (2011)

    Article  Google Scholar 

  11. G. Sathishkumar, C. Venkataraju, R. Murugaraj, K. Sivakumar, J. Mater. Sci. Mater. Electron. 23, 243 (2012)

    Article  Google Scholar 

  12. A. Chatterjee, D. Das, S.K. Pradhan, D. Chakravorty, J. Magn. Magn. Mater. 127, 214 (1993)

    Article  Google Scholar 

  13. S.R. Kulkarni, P.U. Londhe, N.B. Chaure, J. Mater. Sci. Mater. Electron. 24, 4186 (2013)

    Article  Google Scholar 

  14. T. Hyeon, Chem. Commun. 9, 927 (2003)

  15. C.R. Vestal, Z.J. Zhang, Nano Lett. 3, 1739 (2003)

    Article  Google Scholar 

  16. E. Avvakumov, M. Senna, N. Kosova, Soft mechanochemical synthesis: a basis for new chemical technologies (Kluwer Academic Publishers, Boston, 2001)

    Google Scholar 

  17. V. Sepelak, K. Tkacova, Acta Montan. Slovaca 2, 266 (1997)

    Google Scholar 

  18. M. Mozaffari, M.E. Arani, J. Amighian, J. Magn. Magn. Mater. 322, 3240 (2010)

    Article  Google Scholar 

  19. A. Bhaskar, S.R. Murthy, J. Mater. Sci. Mater. Electron. 24, 3292 (2013)

    Article  Google Scholar 

  20. P.P. Hankare, N.M. Patil, R.P. Patil, D.R. Patil, S.D. Delekar, J. Mater. Sci. Mater. Electron. 24, 4028 (2013)

    Article  Google Scholar 

  21. S.P. Yadav, S.S. Shinde, A.A. Kadam, K.Y. Rajpure, J. Alloy Compd. 555, 330 (2013)

    Article  Google Scholar 

  22. P. Dhak, D. Dhak, M. Das, P. Pramanik, J. Mater. Sci. Mater. Electron. 22, 1750 (2011)

    Article  Google Scholar 

  23. M.I. Klinger, J. Phys. C Solid State Phys. 8, 3595 (1975)

    Article  Google Scholar 

  24. U. Ghazanfar, S.A. Siddiqi, G. Abbas, Mater. Sci. Eng. B 118, 132 (2005)

    Article  Google Scholar 

  25. M.A. Khan, M.U. Islam, M. Ishaque, I.Z. Rahman, Ceram. Int. 37, 2519 (2011)

    Article  Google Scholar 

  26. M. Hashim, S. Alimuddin, B. Kumar, H. Koo, S.E. Shirsath, E.M. Mohammed, J. Shah, R.K. Kotnala, H.K. Choi, H. Chung, R. Kumar, J. Alloy. Compd. 11, 518 (2012)

    Google Scholar 

  27. J.C. Maxwell, Electricity and magnetism (Oxford University Press, New York, 1973)

    Google Scholar 

  28. K.W. Wagner, Arch. Elektrotechnol. 2, 371 (1914)

    Article  Google Scholar 

  29. C.G. Koop, Phys. Rev. 83, 121 (1951)

    Article  Google Scholar 

  30. E.J.W. Verwey, J.H. de Boer, Rec. Trav. Chim. Pays-Bas. 55, 531 (1936)

    Article  Google Scholar 

  31. M. Younas, M. Nadeem, M. Atif, R. Grossinger, J. Appl. Phys. 109, 093704 (2011)

    Article  Google Scholar 

  32. B. Senthilkumar, R.K. Selvan, P. Vinothbabu, I. Perelshtein, A. Gedanken, Mater. Chem. Phys. 130, 285 (2011)

    Article  Google Scholar 

  33. S. Mahalakshmi, K.S. Manja, J. Alloy Compd. 457, 522 (2008)

    Article  Google Scholar 

  34. B. Baruwati, K.M. Reddy, S.V. Manorama, R.K. Singh, O. Parkash, Appl. Phys. Lett. 85, 2833 (2004)

    Article  Google Scholar 

  35. K.K. Patankar, S.S. Joshi, B.K. Chougule, Phys. Lett. A 346, 337 (2005)

    Article  Google Scholar 

  36. I.G. Austin, N.F. Mott, Adv. Phys. 18, 41 (1969)

    Article  Google Scholar 

  37. M.A.E. Hiti, J. Phys. D Appl. Phys. 29, 501 (1996)

    Article  Google Scholar 

  38. R.P. Mahajan, K.K. Patankar, M.B. Kothale, S.A. Patil, Bull. Mater. Sci. 23, 273 (2000)

    Article  Google Scholar 

  39. E. Barsoukov, J.R. Macdonald, Impedance spectroscopy—theory, experiment and applications (Wiley, New Jersey, 2005)

    Book  Google Scholar 

  40. R.K. Kotnala, M.A. Dar, V. Verma, A.P. Singh, W.A. Siddiqui, J. Magn. Magn. Mater. 322, 3714 (2010)

    Article  Google Scholar 

  41. W. Chen, W. Zhu, O.K. Tan, X.F. Chen, J. Appl. Phys. 108, 034101 (2010)

    Article  Google Scholar 

  42. S.S. Shinde, A.V. Moholkar, J.H. Kim, K.Y. Rajpure, Surf. Coat. Technol. 205, 3567 (2011)

    Article  Google Scholar 

  43. A. Srivastava, A. Garg, F.D. Morrison, J. Appl. Phys. 105, 054103 (2009)

    Article  Google Scholar 

  44. S.S. Shinde, K.Y. Rajpure, J. Solid State Chem. 183, 2886 (2010)

    Article  Google Scholar 

  45. H. Anwar, A. Maqsood, J. Magn. Magn. Mater. 333, 46 (2013)

    Article  Google Scholar 

  46. O. Subohi, L. Shastri, G.S. Kumar, M.M. Malik, R. Kurchania, Mater. Res. Bull. 49, 651 (2014)

    Article  Google Scholar 

  47. M.V. Nikolic, M.P. Slankamenac, N. Nikolic, D.L. Sekulic, O.S. Aleksic, M. Mitric, T. Ivetic, V.B. Pavlovic, P.M. Nikolic, Sci. Sinter. 44, 307 (2012)

    Article  Google Scholar 

  48. A. S Bondarenko, G. A. Ragoisha, EIS Spectrum Analyser (a freeware program for analysis and simulation of impedance spectra), http://www.abc.chemistry.bsu.by/vi/analyser/

  49. K.M. Batoo, F.A. Mir, M.S.A. El-sadek, M.D. Shahabuddin, N. Ahmed, J. Nanopart. Res. 15, 2067 (2013)

    Article  Google Scholar 

  50. D. Arcos, M. Vazquez, R. Valenzuela, M. Vallet-Regi, J. Mater. Res. 14, 861 (1999)

    Article  Google Scholar 

  51. A.M.M. Farea, S. Kumar, K.M. Batoo, A. Yousef, C.G. Lee, Alimuddin, J. Alloy. Compd. 464, 361 (2008)

    Article  Google Scholar 

  52. R.K. Kotnala, R. Gupta, J. Shah, M.A. Dar, J. Sol-Gel. Sci. Technol. 64, 149 (2012)

    Article  Google Scholar 

  53. I.T. Rabinkin, Z.I. Novikova, Ferrites (Izv Acad. Nauk USSR, Minsk, 1960)

    Google Scholar 

  54. M. Ajmal, A. Maqsood, Mater. Sci. Eng. B 139, 164 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia through Projects No. III43008 and III45003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalibor L. Sekulic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekulic, D.L., Lazarevic, Z.Z., Sataric, M.V. et al. Temperature-dependent complex impedance, electrical conductivity and dielectric studies of MFe2O4 (M = Mn, Ni, Zn) ferrites prepared by sintering of mechanochemical synthesized nanopowders. J Mater Sci: Mater Electron 26, 1291–1303 (2015). https://doi.org/10.1007/s10854-014-2491-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2491-0

Keywords

Navigation