Skip to main content
Log in

Role of immersion time on the properties of SILAR deposited CuO thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CuO thin films were synthesized at relatively low temperature by employing an inexpensive SILAR method. Effect of immersion time on the properties of grown film was studied using structural, morphological and optical characterizations. Structural, morphological, optical and electrical studies of the prepared CuO films were done using X-ray diffraction, field emission scanning electron microscope, and UV–Vis–NIR spectrometer and Hall probe, respectively. The films were found show different nanostructures depending on immersion time. The calculated crystalline size of the films is found increase with the increase of immersion time, and it is found to be 19 nm for 30 s immersion time. Vibration peaks of Cu–O and O–Cu–O bonds have been identified using Fourier transformation infrared spectroscopy. Optical band gap energy of the grown CuO films is calculated and it is found vary from 1.8 to 1.6 eV depending on the immersion time and annealing temperature. Hall effect measurements have shown a p-type conductivity of the grown films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Kawwam, F.H. Alharbi, T. Kayed, A. Aldwayyan, A. Alyamani, N. Tabet, K. Lebbou, Appl. Surf. Sci. 276, 7 (2013)

    Article  Google Scholar 

  2. J. Medina-valtierra, C. Frausto-Reyes, G. Camarillo-Martinez, J.A. Ramirez-Ortiz, Appl. Catal. A: General 356, 36 (2009)

    Article  Google Scholar 

  3. R.M. Mohamed, F.A. Harraz, A. Shawky, Ceram. Int. 40, 2127 (2014)

    Article  Google Scholar 

  4. D.M. Jundale, P.B. Joshi, S. Sen, V.B. Patil, J. Mater. Sci.: Mater. Electron. 23, 1492 (2012)

    Google Scholar 

  5. D.P. Singh, N. Ali, Sci. Adv. Mater. 2, 295 (2010)

    Article  Google Scholar 

  6. J. Kuusisto, J.P. Millola, P. Perez Casal, H. Karhu, J. Vayrynen, T. Salmi, Chem. Eng. J. 115, 93 (2005)

    Article  Google Scholar 

  7. A. Manivel, S. Naveenraj, P. Selvam, S. Kumar, S. Anandan, Sci. Adv. Mater. 2, 51 (2010)

    Article  Google Scholar 

  8. X.P. Gao, J.L. Bao, G.L. Pan, H.Y. Zhu, P.X. Huang, F. Wu, D.Y. Song, J. Phys. Chem. B 108, 5547 (2004)

    Article  Google Scholar 

  9. A. Catana, J.P. Locquet, S.M. Paik, I.K. Schuller, Phys. Rev. B 46, 15477 (1992)

    Article  Google Scholar 

  10. V.P. Godbole, R.D. Vispute, S.M. Chaudhari, S.M. Kanetkar, S.B. Ogale, J. Mater. Res. 5, 372 (1990)

    Article  Google Scholar 

  11. R.K. Singh, J. Narayan, Phys. Rev. B 41, 8843 (1990)

    Article  Google Scholar 

  12. K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G.K. Paul, T. Sakurai, Sol. Energy 80, 715 (2005)

    Article  Google Scholar 

  13. A. Chen, G. Yang, H. Long, F. Li, Y. Li, P. Lu, Thin Solid Films 517, 4277 (2008)

    Article  Google Scholar 

  14. S.B. Ogale, P.G. Bilurkar, N. Mate, S.M. Kanetkar, N. Parikh, B. Patnaik, J. Appl. Phys. 27, 3765 (1992)

    Article  Google Scholar 

  15. N. Kikuchi, K. Tonooka, Thin Solid Films 486, 33 (2005)

    Article  Google Scholar 

  16. M.T.S. Nair, L. Guerrero, O.L. Arenas, P.K. Nair, Appl. Surf. Sci. 150, 143 (1999)

    Article  Google Scholar 

  17. N.A. Okereke, A.J. Ekpunobi, Res. J. Chem. Sci. 1(6), 64 (2011)

    Google Scholar 

  18. J. Medina-Valtierraa, S. Calixto, F. Ruiz, Thin Solid Films 460, 58 (2004)

    Article  Google Scholar 

  19. N. Serin, T. Serin, S. Horzum, Y. Celik, Semicond. Sci. Technol. 20, 398 (2005)

    Article  Google Scholar 

  20. I.Y. Erdogan, O. Gullu, J. Alloys Compd. 492, 378 (2010)

    Article  Google Scholar 

  21. K. Mageshwari, R. Sathyamoorthy, Mater. Sci. Semicond. Process. 16, 337–343 (2013)

    Article  Google Scholar 

  22. R. Sathyamoorthy, K. Mageshwari, Phys. E 47, 157 (2013)

    Article  Google Scholar 

  23. Z. Zang, A. Nakamura, J. Temmyo, Opt. Express 21, 11448 (2013)

    Article  Google Scholar 

  24. A. Vasuhi, R. John Xavier, R. Chandramohan, S. Muthukumaran, K. Dhanabalan, M. Ashokkumar, P. Parameswaren, J. Mater. Sci.: Mater. Electron. 25, 824 (2014)

    Google Scholar 

  25. S. Valanarasu, V. Dhanasekaran, M. Karunakaran, R. Chandramohan, T. Mahalingam, J. Nanosci. Nanotech. 13, 5613 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kathalingam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravichandran, A.T., Dhanabalan, K., Valanarasu, S. et al. Role of immersion time on the properties of SILAR deposited CuO thin films. J Mater Sci: Mater Electron 26, 921–926 (2015). https://doi.org/10.1007/s10854-014-2483-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2483-0

Keywords

Navigation