Skip to main content
Log in

Dielectric, ac-impedance and modulus spectroscopic studies of nano-crystalline Bi0.5Na0.5TiO3 synthesized by using one pot glycine assisted solution combustion from inexpensive TiO2

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nano-crystalline Bi0.5Na0.5TiO3 (BNT) ceramic has been successfully synthesized for the first time by solution combustion synthesis using glycine as the fuel, inexpensive solid TiO2 powder as the raw material, and metal (Bi and Na) as nitrates. Phase formation, the crystalline nature, morphology, and chemical purity of the fabricated BNT were investigated with TGA, XRD, SAED patterns, SEM, TEM, and EDX analyses. TG/DTA analysis of the dry powder gives pre information about the formation of final product around 900 °C, which is a relatively lower temperature than other conventional ceramic methods. XRD patterns confirmed the formation of a single phase of all the sintered ceramics. The bright-field TEM image revealed that the particle size was in the range of 20–35 nm, which was in near agreement with the average crystallite size obtained from XRD. SEM images of the sintered BNT ceramics showed the average grain sizes were in the range of 150 nm–0.5 µm. EDX studies showed the presence of bismuth, sodium, titanium, and oxygen, which confirmed the stoichiometry and purity of the ceramics. The AC conductivity spectrum obeyed the Jonscher power law. The natures of relaxation behavior of the ceramics were rationalized by using impedance and modulus spectroscopy. The dielectric behavior of the ceramics exhibited Debye-like relaxation, and could be explained based on a Maxwell–Wagner model. The activation energies calculated from the grain-boundary relaxation time constant were found to be in the range of 1.5–1.7 eV.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. K.S. Rao, K.C.V. Rajulu, B. Tilak, A. Swathi, Natural Sci. 2, 357 (2010)

    Article  Google Scholar 

  2. K.R. Reddy, K. Nakata, T. Ochiai, T. Murakami, D.A. Tryk, A. Fujishima, J. Nanosci. Nanotechn. 10, 7951 (2010)

    Article  Google Scholar 

  3. K.R. Reddy, K. Nakata, T. Ochiai, T. Murakami, D.A. Tryk, A. Fujishima, J. Nanosci. Nanotechn. 11, 3692 (2011)

    Article  Google Scholar 

  4. Y. Saito, H. Takao, T. Tani, Nature 432, 84 (2004)

    Article  Google Scholar 

  5. T. Takenaka, K. Sakata, K. Toda, Ferroelectrics 106, 375 (1990)

    Article  Google Scholar 

  6. T. Takenaka, K.I. Maruyama, K. Sakata, J. Applied Phys. 30, 2236 (1991)

    Article  Google Scholar 

  7. T. Takenaka, H. Nagata, Key. Engg. Mater. 57, 157 (1999)

    Google Scholar 

  8. S. Senda, J.P. Mercurio, J. Eur. Ceram. Soc. 21, 1333 (2001)

    Article  Google Scholar 

  9. H. Nagata, T. Takenaka, J. Eur. Ceram. Soc. 21, 1299 (2001)

    Article  Google Scholar 

  10. Y. H. Lin, S. J. Zhao, N. Cai, J. B. Bo, X. S. Zhou, C. W. Nan, Mater. Sci. Engg. B 99, 449 (2003)

  11. C. Zhou, X. Liu, W. Li, C. Yuan, J. Mater. Sci. Mater. Electron. 21, 364 (2010)

    Article  Google Scholar 

  12. S. Kuharuangrong, W. Suhulze, J. Am. Ceram. Soc. 79, 1273 (1996)

    Article  Google Scholar 

  13. A. Herabut, A. Safari, J. Am. Ceram. Soc. 80, 2954 (1997)

    Article  Google Scholar 

  14. A.Q. Jiang, G.H. Li, L.D. Zhang, Soild State Commun. 104, 709 (1997)

    Article  Google Scholar 

  15. S. Said, J.P. Mercurio, J. Eur. Ceram. Soc. 21, 1333 (2001)

    Article  Google Scholar 

  16. J. Hao, X. Wang, R. Chen, L. Li, Mater. Chem. Phys. 90, 282 (2005)

    Article  Google Scholar 

  17. Q. Xu, X. Chen, W. Chen, S. Chen, B. Kim, J. Lee, Mater. Lett. 59, 2437 (2005)

    Article  Google Scholar 

  18. M.M. Lenka, M. Oledzka, R.E. Riman, Chem. Mater. 12, 1323 (2002)

    Article  Google Scholar 

  19. Y.J. Ma, J.H. Cho, Y.H. Lee, B.I. Kim, Mater. Chem. Phys. 98, 5 (2006)

    Article  Google Scholar 

  20. Y.F. Liu, Y.N. Lu, S.H. Dai, J. Alloys Comp. 484, 801 (2009)

    Article  Google Scholar 

  21. L. Singh, U.S. Rai, K.D. Mandal, Mater. Res. Bull. 48, 2117 (2013)

    Article  Google Scholar 

  22. L. Singh, U.S. Rai, K.D. Mandal, Adv. Appl. Ceram. 111, 374 (2012)

    Article  Google Scholar 

  23. L. Singh, U.S. Rai, K.D. Mandal, B.C. Sin, H.I. Lee, H. Chung, Y. Lee, Mater. Character. 96, 54 (2014)

    Article  Google Scholar 

  24. L. Singh, U.S. Rai, K.D. Mandal, N.B. Singh, Prog. Crys. Growth Charac. Mater. 60, 15 (2014)

  25. W. Jo, T. Granzow, E. Aulbach, J. Rodel, D. Damjanovic, J. Appl. Phys. 105, 094102 (2009)

    Article  Google Scholar 

  26. K.N. Pham, H.B. Lee, H.S. Han, J.K. Kang, J.S. Lee, A. Ullah, C.W. Ahn, I.W. Kim, J. Korean Phys. Soc. 60, 207 (2012)

    Article  Google Scholar 

  27. H. Yilmaz, G.L. Messing, S.T. Mckinstry, J. Electroceram. 11, 207 (2003)

    Article  Google Scholar 

  28. T. Takenaka, K. Sakata, Ferroelectrics 95, 153 (l989)

  29. Y.M. Li, W. Chen, J. Zhou, Ceram. Int. 31, 139 (2005)

    Article  Google Scholar 

  30. L. Singh, U.S. Rai, K.D. Mandal, J. Alloys Comp. 555, 176 (2013)

    Article  Google Scholar 

  31. P.R. Bueno, W.C. Ribeiro, M.A. Ramírez, J.A. Varela, E. Longo, Appl. Phys. Lett. 90, 142912 (2007)

    Article  Google Scholar 

  32. P.H. Bottelberghs, in Solid Electrolytes, ed. by P. Hangen Muller, W. Van cool (Academic Press, New York, 1978)

  33. A.E. Owen, J.M. Robentson, J. Non Cryst. Sol. 2, 347 (1970)

    Article  Google Scholar 

  34. A. Sen, U.N. Maiti, R. Thapa, K.K. Chattopadhyay, Appl. Phys. A 104, 1105 (2011)

    Article  Google Scholar 

  35. S. Pattanayak, B.N. Parida, P.R. Das, R.N.P. Choudhary, Appl. Phys. A 112, 387 (2013)

    Article  Google Scholar 

  36. J. Plocharski, W. Wieczoreck, Solid State Ion. 28, 979 (1988)

    Article  Google Scholar 

  37. S. Sen, R.N.P. Choudhary, A. Tarafdar, P. Pramanik, J. App. Phys. 99, 124114 (2006)

    Article  Google Scholar 

  38. A.K. Jonscher, Nature 267, 673 (1977)

    Article  Google Scholar 

  39. B.S. Kang, S.K. Choi, C.H. Park, J. App. Phys. 94, 1904 (2003)

    Article  Google Scholar 

  40. P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171 (1972)

    Google Scholar 

  41. K.D. Mandal, L. Singh, S. Sharma, U.S. Rai, M.M. Singh, J. Sol Gel Sci. Technol. 66, 50 (2013)

    Article  Google Scholar 

  42. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation (NRF-2010-0021835) and Priority Research Centers Program (NRF-2009-0093818) funded by the Ministry of Education of the Korean Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngil Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, L., Kim, I.W., Singh, S.V. et al. Dielectric, ac-impedance and modulus spectroscopic studies of nano-crystalline Bi0.5Na0.5TiO3 synthesized by using one pot glycine assisted solution combustion from inexpensive TiO2 . J Mater Sci: Mater Electron 26, 867–883 (2015). https://doi.org/10.1007/s10854-014-2477-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2477-y

Keywords

Navigation