Skip to main content
Log in

Decrease of electrical resistivity in Ca3Co4O9 thermoelectric ceramics by Ti doping

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ca3Co4−xTixO9 polycrystalline thermoelectric ceramics with small amounts of Ti have been prepared by the classical solid state method. X-ray diffraction data have shown that Ca3Co4O9 is the major phase, with small amounts of the Ca3Co2O6 one. Moreover, they show that Ti has been incorporated into these two phases. Electrical resistivity decreases, compared with the values for undoped samples, until 0.03-Ti doped ones. Further Ti addition produces an increase of resistivity with respect to the 0.03 Ti doped samples. Seebeck coefficient does not appreciably change in all the measured temperature range, independently of Ti content. The improvement in electrical resistivity leads to about 55 % higher power factor values for the 0.03 Ti-doped samples than that obtained in the undoped ones. The maximum power factor at 800 °C, around 0.33 mW/K2 m, is slightly higher than the obtained in higher density samples, clearly indicating the good thermoelectric performances of these doped samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Mahan, B. Sales, J. Sharp, Phys. Today 50, 42 (1997)

    Article  Google Scholar 

  2. H. Naito, Y. Kohsaka, D. Cooke, H. Arashi, Sol. Energy 58, 191 (1996)

    Article  Google Scholar 

  3. M.H. Elsheikh, D.A. Shnawah, M.F.M. Sabri, S.B.M. Said, M.H. Hassan, M.B.A. Bashir, M. Mohamad, Renew. Sust. Energ. Rev. 30, 337 (2014)

    Article  Google Scholar 

  4. D. M. Rowe, in Thermoelectrics handbook: macro to nano, ed By D. M. Rowe (CRC Press, Boca Raton, FL, 2006) p. 1–3

  5. I. Terasaki, Y. Sasago, K. Uchinokura, Phys. Rev. B 56, 12685 (1997)

    Article  Google Scholar 

  6. Y. Huang, B. Zhao, J. Fang, R. Ang, Y. Sun, J. Appl. Phys. 110, 123713 (2011)

    Article  Google Scholar 

  7. A. Sotelo, G. Constantinescu, S. Rasekh, M.A. Torres, J.C. Diez, M.A. Madre, J. Eur. Ceram. Soc. 32, 2415 (2012)

    Article  Google Scholar 

  8. N. Sun, S.T. Dong, B.B. Zhang, Y.B. Chen, J. Zhou, S.T. Zhang, Z.B. Gu, S.H. Yao, Y.F. Chen, J. Appl. Phys. 114, 043705 (2013)

    Article  Google Scholar 

  9. J.C. Diez, E. Guilmeau, M.A. Madre, S. Marinel, S. Lemmonier, A. Sotelo, Solid State Ionics 180, 827 (2009)

    Article  Google Scholar 

  10. X.G. Luo, Y.C. Jing, H. Chen, X.H. Chen, J. Crystal Growth 308, 309 (2007)

    Article  Google Scholar 

  11. A. Sotelo, E. Guilmeau, S. Rasekh, M.A. Madre, S. Marinel, J.C. Diez, J. Eur. Ceram. Soc. 30, 1815 (2010)

    Article  Google Scholar 

  12. R. Ang, Y.P. Sun, X. Luo, W.H. Song, J. Appl. Phys. 102, 073721 (2007)

    Article  Google Scholar 

  13. S. Rasekh, G. Constantinescu, M.A. Torres, M.A. Madre, J.C. Diez, A. Sotelo, Adv. Appl. Ceram. 111, 490 (2012)

    Article  Google Scholar 

  14. Y. Miyazaki, Solid State Ionics 172, 463 (2004)

    Article  Google Scholar 

  15. H. Wang, X. Sun, X. Yan, D. Huo, X. Li, J.-G. Li, X. Ding, J. Alloys Compds. 582, 294 (2014)

    Article  Google Scholar 

  16. S. Butt, Y.-C.- Liu, J.-L. Lan, K. Shehzad, B. Zhan, Y. Lin, C.-W. Nan, J. Alloys Compds. 588, 277 (2014)

    Article  Google Scholar 

  17. A. Sotelo, E. Guilmeau, M.A. Madre, S. Marinel, S. Lemmonier, J.C. Diez, Bol. Soc. Esp. Ceram. 47, 225 (2008)

    Article  Google Scholar 

  18. N.M. Ferreira, S. Rasekh, F.M. Costa, M.A. Madre, A. Sotelo, J.C. Diez, M.A. Torres, Mater. Lett. 83, 144 (2012)

    Article  Google Scholar 

  19. J.C. Diez, S. Rasekh, M.A. Madre, E. Guilmeau, S. Marinel, A. Sotelo, J. Electron. Mater. 39, 1601 (2010)

    Article  Google Scholar 

  20. G. Constantinescu, S. Rasekh, M.A. Torres, M.A. Madre, J.C. Diez, A. Sotelo, Scripta Mater. 68, 75 (2013)

    Article  Google Scholar 

  21. A. Maignan, D. Pelloquin, S. Hébert, Y. Klein, M. Hervieu, Bol. Soc. Esp. Ceram. 45, 122 (2006)

    Article  Google Scholar 

  22. G. Constantinescu, S. Rasekh, M.A. Torres, J.C. Diez, M.A. Madre, A. Sotelo, J. Alloys Compds. 577, 511 (2013)

    Article  Google Scholar 

  23. S. Demirel, M.A. Aksan, S. Altin, J. Mater. Sci.: Mater. Electron. 23, 2251 (2012)

    Google Scholar 

  24. J.C. Diez, M.A. Torres, S. Rasekh, G. Constantinescu, M.A. Madre, A. Sotelo, Ceram. Int. 39, 6051 (2013)

    Article  Google Scholar 

  25. S. Pinitsoontorn, N. Lerssongkram, N. Keawprak, V. Amornkitbamrung, J. Mater. Sci.: Mater. Electron. 23, 1050 (2012)

    Google Scholar 

  26. A. Sotelo, S. Rasekh, E. Guilmeau, M.A. Madre, M.A. Torres, S. Marinel, J.C. Diez, Mater. Res. Bull. 46, 2537 (2011)

    Article  Google Scholar 

  27. J. Liu, H.S. Yang, Y.S. Chai, L. Zhu, H. Qu, C.H. Sun, H.X. Gao, X.D. Chen, K.Q. Ruan, L.Z. Cao, Phys. Lett. A 356, 85 (2006)

    Article  Google Scholar 

  28. G. Constantinescu, M.A. Torres, S. Rasekh, M.A. Madre, J.C. Diez, A. Sotelo, J. Mater. Sci.: Mater. Electron. 25, 922 (2014)

    Google Scholar 

  29. M.A. Madre, F.M. Costa, N.M. Ferreira, A. Sotelo, M.A. Torres, G. Constantinescu, S. Rasekh, J.C. Diez, J. Eur. Ceram. Soc. 33, 1747 (2013)

    Article  Google Scholar 

  30. T. Kajitani, K. Yubuta, X.Y. Huang, Y. Miyazaki, J. Electron. Mater. 38, 1462 (2009)

    Article  Google Scholar 

  31. C.H. Hervoches, H. Okamoto, A. Kjekshus, H. Fjellvag, B. Hauback, J. Solid State Chem. 182, 331 (2009)

    Article  Google Scholar 

  32. D. Sedmidubský, V. Jakes, O. Jankovský, J. Leitner, Z. Sofer, J. Hejtmánek, J. Solid State Chem. 194, 199 (2012)

    Article  Google Scholar 

  33. S. Rasekh, M.A. Torres, G. Constantinescu, M.A. Madre, J.C. Diez, A. Sotelo, J. Mater. Sci.: Mater. Electron. 24, 2309 (2013)

    Google Scholar 

  34. L. Xu, F. Li, Y. Wang, J. Alloys Compds. 501, 115 (2010)

    Article  Google Scholar 

  35. N. Wu, T.C. Holgate, N.V. Nong, N. Pryds, S. Linderoth, J. Eur. Ceram. Soc. 34, 925 (2014)

    Article  Google Scholar 

  36. Y.H. Lin, J. Lan, Z.J. Shen, Y.H. Liu, C.W. Nan, J.F. Li, Appl. Phys. Lett. 94, 072107 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the MINECO-FEDER (Project MAT2013-46505-C3-1-R) and the Gobierno de Aragón (Research Groups T12 and T87) for financial support. Authors would also like to acknowledge the use of Servicio General de Apoyo a la Investigación-SAI, Universidad de Zaragoza. The technical contributions of C. Estepa, and C. Gallego are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Madre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, M.A., Rasekh, S., Bosque, P. et al. Decrease of electrical resistivity in Ca3Co4O9 thermoelectric ceramics by Ti doping. J Mater Sci: Mater Electron 26, 815–820 (2015). https://doi.org/10.1007/s10854-014-2469-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2469-y

Keywords

Navigation