Skip to main content

Advertisement

Log in

AlN thin films deposited on different Si-based substrates through RF magnetron sputtering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Various Si-based materials such as Si (100), Si (111), oxidized Si (SiO2), and amorphous Si (α-Si) are used as substrates for the growth of c-axis-orientated AlN thin films using radio frequency magnetron sputtering. First, AlN is studied on various substrates under a fixed deposition condition. The results show that AlN deposited on monocrystalline silicon has different structures and stress properties from it deposited on amorphous Si-based layers because of the former’s alien growth mechanism at the initiation of growth. Of all the substrates, AlN sputtered on SiO2 exhibits the best structure and morphologies. Then AlN is researched on SiO2 with the RF power and gas flow ratio of N2 to Ar varied. The results approve that among all chosen RF powers, AlN sputtered at 150 W has the strongest (002) crystal peak, the smallest root-mean-square (RMS) surface roughness of 2.74 nm, and the lowest tensile stress of 605 MPa, but the lowest deposition rate. For the gas flow ratio, AlN synthesized at the N2 to Ar flow ratio of 3:1 represents the highest intensity of (002) texture, the smoothest surface with an RMS of 4.21 nm, but the relatively lower deposition rate and larger residual stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. U. Figueroa, O. Salas, J. Oseguera, Surf. Coat. Technol. 200, 1768 (2005)

    Article  Google Scholar 

  2. Z.X. Bi, Y.D. Zheng, R. Zhang, S.L. Gu, X.Q. Xiu, L.L. Zhou, B. Shen, D.J. Chen, Y. Shi, J. Mater. Sci. Mater. Electron. 15, 317 (2004)

    Article  Google Scholar 

  3. S. Marauska, V. Hrkac, T. Dankwort, R. Jahns, H.J. Quenzer, R. Knöchel, L. Kienle, B. Wagner, Microsyst. Technol. 18, 787 (2012)

    Article  Google Scholar 

  4. G.F. Iriarte, J.G. Rodríguez, F. Calle, Mater. Res. Bull. 45, 1039 (2010)

    Article  Google Scholar 

  5. R.D. Vispute, J. Narayan, H. Wu, K. Jagannadham, J. Appl. Phys. 77, 4724 (1995)

    Article  Google Scholar 

  6. G.F. Iriarte, D.F. Reyes, D. González, J.G. Rodriguez, R. García, F. Calle, Appl. Surf. Sci. 257, 9306 (2011)

    Article  Google Scholar 

  7. E. Milyutin, S. Harada, D. Martin, J.F. Carlin, N. Grandjean, V. Savu, O. Vaszquez-Mena, J. Brugger, P. Muralt, J. Vac. Sci. Technol. B 28, L61 (2010)

    Article  Google Scholar 

  8. A. Szekeres, Z. Fogarassy, P. Petrik, E. Vlaikova, A. Cziraki, G. Socol, C. Ristoscu, S. Grigorescu, I.N. Mihailescu, Appl. Surf. Sci. 257, 5370 (2011)

    Article  Google Scholar 

  9. J. Bjurström, G. Wingqvist, V. Yantchev, I Katardjiev. J. Micromech. Microeng. 17, 651 (2007)

    Article  Google Scholar 

  10. J. Olivares, E. Iborra, M. Clement, L. Vergara, J. Sangrador, A. Sanz-Hervás, Sens. Actuators A 123–124, 590 (2005)

    Article  Google Scholar 

  11. C.K. Chung, M.Q. Tsai, P.H. Tsai, C. Lee, J. Micromech. Microeng. 15, 136 (2005)

    Article  Google Scholar 

  12. A. Artieda, C. Sandu, P. Muralt, J. Vac. Sci. Technol. A 28, 390 (2010)

    Article  Google Scholar 

  13. J. Olivares, J. Capilla, M. Clement, J. Sangrador, E. Iborra, IEEE international ultrasonics symposium proceedings, (IEEE, Orlando, FL, 2011), p. 1716

  14. X.Q. Jiao, R. Zhang, J. Yang, H. Zhong, Y. Shi, X.Y. Chen, J. Shi, Appl. Phys. A 116, 621 (2014)

    Article  Google Scholar 

  15. J.X. Zhang, H. Cheng, Y.Z. Chen, A. Uddin, S. Yuan, S.J. Geng, S. Zhang, Surf. Coat. Technol. 198, 68 (2005)

    Article  Google Scholar 

  16. K. Dovidenko, S. Oktyabrsky, J. Narayan, M. Razeghi, J. Appl. Phys. 79, 2439 (1996)

    Article  Google Scholar 

  17. W.K. Liu, K.W. Tay, S.C. Kuo, M.J. Wu, Sci. China Ser. G 52, 226 (2009)

    Article  Google Scholar 

  18. A. Kale, R.S. Brusa, A. Miotello, Appl. Surf. Sci. 258, 3450 (2012)

    Article  Google Scholar 

  19. S.H. Lee, J.K. Lee, K.H. Yoon, J. Vac. Sci. Technol. A 21, 1 (2003)

    Article  Google Scholar 

  20. G.W. Auner, F. Jin, V.M. Naik, R. Naik, J. Appl. Phys. 85, 7879 (1999)

    Article  Google Scholar 

  21. Y.J. Yong, J.Y. Lee, H.S. Kim, J.Y. Lee, Appl. Phys. Lett. 71, 1489 (1997)

    Article  Google Scholar 

  22. U. Kaiser, P.D. Brown, I. Khodos, C.J. Humphreys, H.P.D. Schenk, W. Richter, J. Mater. Res. 14, 2036 (1999)

    Article  Google Scholar 

  23. J.X. Zhang, Y.Z. Chen, H. Cheng, A. Uddin, S. Yuan, K. Pita, T.G. Andersson, Thin Solid Films 471, 336 (2005)

    Article  Google Scholar 

  24. J.A. Thornton, Ann. Rev. Mater. Sci. 7, 239 (1977)

    Article  Google Scholar 

  25. R.E. Sah, L. Kirste, M. Baeumler, P. Hiesinger, V. Cimalla, V. Lebedev, H. Baumann, H.-E. Zschau, J. Vac. Sci. Technol. A 28, 394 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from National Natural Science Foundation of China (No. 61101038) and Sichuan Key Technology R&D Program (No. 2011GZ0220) and thank Mr. Lei Gao for the XRD measurement and Mrs. Ying Fan for her help with AFM scanning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangquan Jiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, X., Shi, Y., Zhong, H. et al. AlN thin films deposited on different Si-based substrates through RF magnetron sputtering. J Mater Sci: Mater Electron 26, 801–808 (2015). https://doi.org/10.1007/s10854-014-2467-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2467-0

Keywords

Navigation