Skip to main content
Log in

Free-standing microporous paper-like graphene films with electrodeposited PPy coatings as electrodes for supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Free-standing microporous paper-like graphene films with electrodeposited polypyrrole (PPy) coatings were prepared. The microporous structures were produced by employing PS microspheres as sacrificial templates. PPy was coated on the films using an electrochemical deposition process to further improve the performance of these graphene electrode materials. The electrochemical performance of PPy coated microporous graphene films is evaluated and compared with solid graphene films. The results reveal that the incorporation of PPy and microporous structures significantly improve the electrochemical performance of graphene based electrodes for supercapacitors. Microporous films have higher capacitance than their solid counterparts although they have slightly lower conductivity, which reveals that microporous structures play an important role in the electrochemical performance of the electrode materials. The PPy coated microporous graphene films have the better electrochemical performance than uncoated counterparts, which indicates that PPy coatings have significant effects on graphene based electrodes. This in-depth research on free-standing microporous paper-like graphene with electrodeposited PPy coatings provides a new route to combine the advantages of both graphene and PPy so as to produce high performance electrodes for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Mun, C. Jo, T. Hyeon, Carbon 64, 391 (2013)

    Article  Google Scholar 

  2. M.F. El Kady, R.B. Kaner, Nat. Commun. 4, 1475 (2013)

    Article  Google Scholar 

  3. H. Jiang, P.S. Lee, C. Li, Energy Environ. Sci. 6, 41 (2013)

    Article  Google Scholar 

  4. Y. Zhu, S. Murali, W. Cai, Adv. Mater. 22, 3906 (2010)

    Article  Google Scholar 

  5. X. Cao, Y. Shi, W. Shi, Small 7, 3163 (2011)

    Article  Google Scholar 

  6. F. Liu, S. Song, D. Xue, Adv. Mater. 24, 1089 (2012)

    Article  Google Scholar 

  7. G. Wang, X. Sun, F. Lu, Small 8, 452 (2012)

    Article  Google Scholar 

  8. J. Lee, S.I. Kim, J. Yoon, ACS Nano 7, 6047 (2013)

    Article  Google Scholar 

  9. J. Zhi, W. Zhao, X. Liu, Adv. Funct. Mater. 24, 2013 (2014)

    Article  Google Scholar 

  10. T. Kim, G. Jung, S. Yoo, ACS Nano 7, 6899 (2013)

    Article  Google Scholar 

  11. J. Hu, Z. Kang, F. Li, Carbon 67, 221 (2014)

    Article  Google Scholar 

  12. B.G. Choi, M. Yang, W.H. Hong, ACS Nano 6, 4020 (2012)

    Article  Google Scholar 

  13. L.L. Zhang, X. Zhao, Chem. Soc. Rev. 38, 2520 (2009)

    Article  Google Scholar 

  14. J. Zhang, X. Zhao, J. Phys. Chem. C 116, 5420 (2012)

    Article  Google Scholar 

  15. H.P. De Oliveira, S.A. Sydlik, T.M. Swager, J. Phys. Chem. C 117, 10270 (2013)

    Article  Google Scholar 

  16. H.H. Chang, C.K. Chang, Y.C. Tsai, Carbon 50, 2331 (2012)

    Article  Google Scholar 

  17. A. Liu, C. Li, H. Bai, J. Phys. Chem. C 114, 22783 (2010)

    Article  Google Scholar 

  18. W.S. Hummers Jr, R.E. Offeman, JACS 80, 1339 (1958)

    Article  Google Scholar 

  19. L. Jiang, X. Lu, X. Zheng, J. Mater. Sci.: Mater. Electron. 25, 174 (2014)

    Google Scholar 

  20. S. Pei, J. Zhao, J. Du, Carbon 48, 4466 (2010)

    Article  Google Scholar 

  21. Z. Xu, Z. Li, C.M. Holt, J. Phys. Chem. Lett. 3, 2928 (2012)

    Article  Google Scholar 

  22. J. Yan, J. Liu, Z. Fan, Carbon 50, 2179 (2012)

    Article  Google Scholar 

  23. L. Jiang, Z. Fan, Nanoscale 6, 1922 (2014)

    Article  Google Scholar 

  24. S. Bose, T. Kuila, A.K. Mishra, J. Mater. Chem. 22, 767 (2012)

    Article  Google Scholar 

  25. N.P. Wickramaratne, J. Xu, M. Wang, Chem. Mater. 26, 2820 (2014)

    Article  Google Scholar 

  26. S. Bose, N.H. Kim, T. Kuila, Nanotechnology 22, 295202 (2011)

    Article  Google Scholar 

  27. Y. Liu, Y. Zhang, G. Ma, Electrochim. Acta 88, 519 (2013)

    Article  Google Scholar 

  28. P.A. Basnayaka, M.K. Ram, E.K. Stefanakos, Electrochim. Acta 92, 376 (2013)

    Article  Google Scholar 

  29. Y. He, W. Chen, X. Li, ACS Nano 7, 174 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the Sichuan Youth Science-Technology Foundation (2011JQ0010), and Construction Program for Innovative Research Team of University in Sichuan Province (14TD0050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 571 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Lu, X., Xu, J. et al. Free-standing microporous paper-like graphene films with electrodeposited PPy coatings as electrodes for supercapacitors. J Mater Sci: Mater Electron 26, 747–754 (2015). https://doi.org/10.1007/s10854-014-2459-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2459-0

Keywords

Navigation