Skip to main content
Log in

Far-infrared reflection study on crystal structures and dielectric properties of Ba(Mg1/3Ta2/3)O3-BaWO4 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ba(Mg1/3Ta2/3)O3–BaWO4 (BMT–BW) ceramics were synthesized at 1,490 °C for 3 h using the conventional solid-state sintering technique, with BW contents of 2, 4 and 6 wt%. Crystal structures were elucidated by X-ray diffraction (XRD), and vibration modes were obtained by far-infrared spectroscopy (FIR). Correlations among crystal structures, dielectric properties and phonon modes of the ceramics were evaluated. The results demonstrate that the lattice parameter ratio (c/a) and the ordering degree reach a maximum value at x = 0.04. Studies about the FIR spectra also show that the IR active modes near 230 and 540 cm−1 reach a maximum value at x = 0.04. IR active modes near 360 cm−1 split and new phonon modes appear at x ≥ 0.04, which agrees with the change in the crystal structures as proved in the XRD results. The correlations between dielectric properties and IR phonon modes were established with vibration modes as the media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.A. Lan, M.H. Liang, C.T. Hu, K.S. Liu, I.N. Lin, Influence of Zr-Doping on the microstructure and microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 materials. Mater. Chem. Phys. 79(23), 266–269 (2003)

    Article  Google Scholar 

  2. J.I. Yang, S. Nahm, C.H. Choi, H.J. Lee, H.M. Park, Microstructure and microwave dielectric properties of Ba(Zn1/3Ta2/3)O3 ceramics with ZrO2 addition. J. Am. Ceram. Soc. 85(1), 165–168 (2002)

    Article  Google Scholar 

  3. T.A. Vanderah, Talking ceramics. Science 298(5596), 1182–1184 (2002)

    Article  Google Scholar 

  4. F. Shi, H.L. Dong, Correlation of phonon characteristics and crystal structural of Ba[Zn1/3(Nb1-xTax)2/3]O3 solid solutions. J. Appl. Phys. 111(1), 014–111 (2012)

    Article  Google Scholar 

  5. H. Hughes, D.M. Iddles, I.M. Reaney, Niobate-based microwave dielectrics suitable for third generation mobile phone base stations. Appl. Phys. Lett. 79(18), 2952–2954 (2001)

    Article  Google Scholar 

  6. A. Dias, V.S.T. Ciminelli, F.M. Matinaga, R.L. Moreira, Raman scattering and X-ray diffraction investigations on hydrothermal barium magnesium niobate ceramics. J. Eur. Ceram. Soc. 21(15), 2739–2744 (2001)

    Article  Google Scholar 

  7. M.W. Lufaso, Crystal structures, modeling, and dielectric property relationships of 2:1 ordered Ba3MM’2O9 (M = Mg, Ni, Zn; M’ = Nb, Ta) perovskites. Chem. Mater. 16(11), 2148–2156 (2004)

    Article  Google Scholar 

  8. S. Nomura, K. Toyama, K. Kaneta, Ba(Mg1/3Ta2/3)O3 ceramics with temperature- stable high dielectric constant and low microwave loss. Jpn. J. Appl. Phys. 21(10), 624–626 (1982)

    Article  Google Scholar 

  9. K.H. Yoon, D.P. Kim, E.S. Kim, Effect of BaWO4 on the microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 ceramics. J. Am. Ceram. Soc. 77(4), 1062–1066 (1994)

    Article  Google Scholar 

  10. Liu Hongjun, Zhigang Zang, Xiaosheng Tang, Synthesis mechanism and optical properties of well nanoflower-shaped ZnO fabricated by a facile method. Opt. Mater. Express. 4(9), 1762–1769 (2014)

    Article  Google Scholar 

  11. K. Matsumoto, T. Hiuga, K. Takada, Ba(Mg1/3Ta2/3)O3 ceramics with ultra-low loss at microwave frequencies. IEEE. 33(6), 118–121 (1986)

    Google Scholar 

  12. X.M. Chen, Y. Suzuki, Sinterability improvement of Ba(Mg1/3Ta2/3)O3 dielectric ceramics. J Mater Electron. 5, 244–247 (1994)

    Article  Google Scholar 

  13. W. Wang, S.H. Wu, Study on Ba(Mg1/3Ta2/3)O3 ceramics doped with BaSnO3 nanoscaled powder. Piezoelectrics Acoustooptics 27(4), 412–414 (2005). (in Chinese)

    Google Scholar 

  14. H. Matsumoto, H. Tamura, K. Wakino, Ba(Mg1/3Ta2/3)O3-BaSnO3 High-Q Dielectric Resonator. Jpn. J. Appl. Phy. 30(1), 2347–2349 (1991)

    Article  Google Scholar 

  15. J. Song, D.H. Xie, X.D. Xing, The effect of MnCO3 on the structure and microwave properties of BMT ceramic. Piezoelectrics Acoustooptics 26(6), 488–490 (2004). (in Chinese)

    Google Scholar 

  16. T. Shimada, Far-infrared reflection and microwave properties of Ba([Mg1-xZnx]1/3, Ta2/3)O3 ceramics. J. Eur. Ceram. Soc. 24, 1799–1803 (2004)

    Article  Google Scholar 

  17. H. Zhang, C.L. Diao, S.L. Liu, S.Z. Jiang, F. Shi, X.P. Jing, X-ray diffraction and Raman scattering investigations on Ba[Mg(1-x)/3ZrxTa2(1-x)/3]O3 solid solutions. J. Alloys Compd. 587, 717–723 (2014)

    Article  Google Scholar 

  18. I.G. Siny, R. Tao, R.S. Katiyar, R. Guo, A.S. Bhalla, Raman spectroscopy of Mg-Ta order–disorder in Ba(Mg1/3Ta2/3)O3. J. Phys. Chem. Solids 59(2), 181–195 (1998)

    Article  Google Scholar 

  19. D. Errandonea, J. Pellicer-Porres, F. J. Manjón, “Determination of the high-pressure crystal structure of BaWO4 and PbWO4”, Phys. Rev. B, 73, 092106 (2006)

  20. S. Peng, M.Q. Wu, Effect of BaWO4 doping on the microwave dielectric properties of BMT microwave ceramics. EC&M 30(11), 1–4 (2011). (in Chinese)

    Google Scholar 

  21. H.L. Dong, F. Shi, Vibration Spectra and Structural Characteristics of Ba[(Zn1-xMgx)1/3Nb2/3]O3 Solid Solutions. Appl. Spectrosc. Rev. 46(3), 207–221 (2011)

    Article  Google Scholar 

  22. C.L. Diao, F. Shi, Correlation among dielectric properties, vibration modes and crystal structures in Ba[SnxZn(1-x)/3Nb2(1-x)/3]O3 solid solutions. J. Phys. Chem. C 116(12), 6852–6858 (2012)

    Article  Google Scholar 

  23. A. Dias, L.A. Khalam, M.T. Sebastian, Chemical substitution in Ba(RE1/2Nb1/2)O3 (RE = La, Nd, Sm, Gd, Tb, and Y) microwave ceramics and its influence on the crystal structure and phonon modes. Chem. Mater. 18(1), 214–220 (2006)

    Article  Google Scholar 

  24. A. Dias, L.A. Khalam, M.T. Sebastian et al., “Raman scattering and infrared spectroscopy of chemically substituted Sr2LnTaO6 (Ln = Lanthanides, Y, and In) double perovskites. Chem. Mater. 20, 5253–5259 (2008)

    Article  Google Scholar 

  25. A. Dias, R.L. Moreira, Far-infrared spectroscopy in ordered and disordered Ba(Mg1/3 Nb2/3)O3 microwave ceramics. J. Appl. Phys. 94(5), 3414–3422 (2003)

    Article  Google Scholar 

  26. K. Fukuda, R. Kitoh, I. Awai, Far-infrared reflection spectra of dielectric ceramics for microwave applications. J. Am. Ceram. Soc. 77, 149–154 (1994)

    Article  Google Scholar 

  27. K. Wakino, M. Murata, H. Tamura, Far infrared reflection spectra of Ba(Zn, Ta)O3-BaZrO3 dielectric resonator material. J. Am. Ceram. Soc. 69, 34–37 (1986)

    Article  Google Scholar 

  28. N. Toru, S. Massaaki, S. Mutsuo, N. Koichi, Jpn. J. Appl. Phys. 35, 5163–5167 (1996)

    Article  Google Scholar 

  29. S. Kawashima, M. Nishida, I. Ueda, H. Ouchi, Ba(Zn1/3Ta2/3)O3 ceramics with low dielectric loss at microwave frequencies. J. Am. Ceram. Soc. 66(6), 421–423 (1983)

    Article  Google Scholar 

  30. S. Kamba, H. Hughes, D. Noujni, S. Surendran, R. Pullar, P. Samoukhina, D. Iddles, Relationship between microwave and lattice vibration properties in Ba(Zn1/3Nb2/3)O3-based microwave dielectric ceramics. J. Phys. D Appl. Phys. 37(14), 1980–1986 (2004)

    Article  Google Scholar 

  31. C.H. Wang, G.H. Liu, X.P. Jing, G.S. Tian, X. Lu, J. Shao, First-principle calculation and far infrared measurement for infrared-active modes of Ba(Mg1/3Ta2/3)O3. J. Am. Ceram. Soc. 93(11), 3782–3787 (2010)

    Article  Google Scholar 

  32. C.T. Cha, Y.C. Chen, H.F. Cheng, Correlation of microwave properties and normal vibration modes of xBa(Mg1/3Ta2/3)O3-(1-x)Ba(Mgl/3Nb2/3)O3 ceramics. J. Appl. Phys. 94(5), 3360–3364 (2003)

    Article  Google Scholar 

  33. H. Tamura, D.A. Sagala, K. Wakino, Lattice vibrations of Ba(Mg1/3Ta2/3)O3 crystal with ordered perovskite structure. Jpn. J. Appl. Phys. 25, 787–791 (1986)

    Article  Google Scholar 

  34. T. Nagai, M. Sugaiyama, M. Sando, K. Niihara, Anoumaly in the infrared active phonon modes and its relationship to the dielectric constant of (Ba1-xSrx)(Mg1/3Ta2/3)O3 compound. Jpn. J. Appl. Phys. 35, 5163–5167 (1996)

    Article  Google Scholar 

  35. D.M. Roessler, Kramers–Krönig analysis of reflection data. Br. J. Appl. Phys. 16(8), 1119 (1965)

    Article  Google Scholar 

  36. D.M. Roessler, Kramers–Krönig analysis of non-normal incidence reflection. Br. J. Appl. Phys. 16(9), 1359 (1965)

    Article  Google Scholar 

  37. D.M. Roessler, “Kramers–Krönig analysis of reflection data.3 Approximations with reference to sodium iodide”, Bri. J. Appl. Phys. 17(10), 1313 (1966)

    Google Scholar 

  38. I. Nakagawa: Shindo Bunkogaku (Vibrational Spectroscopy) (Gakkaishuppan-Center, Tokyo, 1987) p 205 [in Japanese]

  39. S. Katayama, N.T. Yoshinagel, Synthesis of perovskite Ba(Mg1/3Ta2/3)O3 powder from Ba-Mg-Ta at oxide precursor. Ceram Process Sci. Techno. 37, 69–73 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, Z., Shi, F., Gu, Y. et al. Far-infrared reflection study on crystal structures and dielectric properties of Ba(Mg1/3Ta2/3)O3-BaWO4 ceramics. J Mater Sci: Mater Electron 26, 711–718 (2015). https://doi.org/10.1007/s10854-014-2454-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2454-5

Keywords

Navigation