Skip to main content
Log in

Synthesis of hierarchical nanowires-based TiO2 spheres for their application as the light blocking layers in CdS/CdSe co-sensitized solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Three-dimensional nanowires-based TiO2 hierarchical spheres (TiO2-HS) have been fabricated by a simple hydrothermal method in this paper. These TiO2-HS composed of the aggregations of TiO2 nanowires with countless porous holes show good electronic transfer, high loading of quantum dots and high diffused reflection ability. These TiO2-HS were designed as the overlayer for light blocking and applied to quantum dots sensitized solar cells (QDSSCs) based on bare TiO2 nanoparticles (TiO2-NP). CdS and CdSe quantum dots were deposited by successive ionic layer absorption and reaction method. The results show that the values of the short-circuit current density (J sc) and the power conversion efficiency (η) have been increased up to 16.81 mA cm−2 and 4.50 % for the TiO2-NP/TiO2-HS double-layered QDSSCs, far higher than the single-layer TiO2-NP QDSSCs and TiO2-HS QDSSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. O’Regan, M. Grätzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  2. A. Badawi, K. Easawi, N. Al-Hosiny, S. Abdallah, Mater. Sci. Appl. 5, 27 (2014)

    Google Scholar 

  3. T. Dittrich, A. Belaidi, A. Ennaoui, Sol. Energy Mater. Sol. Cells 95, 1527 (2011)

    Article  Google Scholar 

  4. P.V. Kamat, K. Tvrdy, D.R. Baker, J.G. Radich, Chem. Rev. 110, 6664 (2010)

    Article  Google Scholar 

  5. O.E. Semonin, J.M. Luther, S. Choi, H.Y. Chen, J. Gao, A.J. Nozik, M.C. Beard, Peak Sci. 334, 1530 (2011)

    Article  Google Scholar 

  6. P.V. Kamat, J. Phys. Chem. C 112, 18737 (2008)

    Article  Google Scholar 

  7. P.V. Kamat, J. Phys. Chem. Lett. 4, 908 (2013)

    Article  Google Scholar 

  8. P.K. Santra, P.V. Kamat, J. Am. Chem. Soc. 134, 2508 (2012)

    Article  Google Scholar 

  9. A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, J. Mater. Sci. Mater. Electron. 24, 3014 (2013)

    Article  Google Scholar 

  10. D.R. Pernik, K. Tvrdy, J.G. Radich, P.V. Kamat, J. Phys. Chem. C 115, 13511 (2011)

    Article  Google Scholar 

  11. Y. Xiong, F. Deng, L. Wang, Y.S. Liu, J. Mater. Sci. Mater. Electron. 25, 3039 (2014)

    Article  Google Scholar 

  12. A. Badawi, N. Al-Hosiny, S. Abdallah, S. Negm, H. Talaat, Sol. Energy 88, 137 (2013)

    Article  Google Scholar 

  13. R. Plass, S. Pelet, J. Krueger, M. Grätzel, J. Phys. Chem. B 106, 7578 (2002)

    Article  Google Scholar 

  14. C.S. Lim, H. Im, J.H. Rhee, Y.H. Lee, H.J. Kim, N. Maiti, Y. Kang, J.A. Chang, M.K. Nazeeruddin, M. Grätzel, S.I. Seok, J. Mater. Chem. 22, 1107 (2012)

    Article  Google Scholar 

  15. Y.L. Lee, Y.S. Lo, Adv. Funct. Mater. 19, 604 (2009)

    Article  Google Scholar 

  16. W.A. Tisdale, K.J. Williams, B.A. Timp, D.J. Norris, E.S. Aydil, X.Y. Zhu, Science 328, 1543 (2010)

    Article  Google Scholar 

  17. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P.V. Kamat, J. Am. Chem. Soc. 130, 4007 (2008)

    Article  Google Scholar 

  18. J. Albero, J.N. Clifford, E. Palomares, Coord. Chem. Rev. 263–264, 53 (2014)

    Article  Google Scholar 

  19. G.L. Agawane, S.W. Shin, M.P. Suryawanshi, K.V. Gurav, A.V. Moholkar, J.Y. Lee, P.S. Patil, J.H. Yun, J.H. Kim, Ceram. Int. 40, 367 (2014)

    Article  Google Scholar 

  20. A. Salant, M. Shalom, I. Hod, A. Faust, A. Zaban, U. Banin, ACS Nano 4, 5962 (2010)

    Article  Google Scholar 

  21. D. Wu, F. Zhu, J. Li, H. Dong, Q. Li, K. Jiang, D. Xu, J. Mater. Chem. 22, 11665 (2012)

    Article  Google Scholar 

  22. Q.F. Zhang, G.Z. Cao, J. Mater. Chem. 21, 6769 (2011)

    Article  Google Scholar 

  23. K. Fan, W. Zhang, T. Peng, J. Chen, F. Yang, J. Phys. Chem. C 115, 17213 (2011)

    Article  Google Scholar 

  24. J. Zhang, W. Que, Q. Jia, P. Zhong, Y. Liao, X. Ye, Y. Ding, J. Alloys Compd. 509, 7421 (2011)

    Article  Google Scholar 

  25. Z. Lan, J.H. Wu, J.M. Lin, M.L. Huang, J. Mater. Chem. 21, 15552 (2011)

    Article  Google Scholar 

  26. J. Wu, S. Hao, Z. Lan, J. Lin, M. Huang, Y. Huang, P. Li, S. Yin, J. Am. Chem. Soc. 130, 11568 (2008)

    Article  Google Scholar 

  27. Z. Lan, J. Wu, S. Hao, J. Lin, M. Huang, Y. Huang, Energy Environ. Sci. 2, 524 (2009)

    Article  Google Scholar 

  28. H. Lee, M. Wang, P. Chen, D.R. Gamelin, S.M. Zakeeruddin, M. Gratzel, M.K. Nazeeruddin, Nano Lett. 9, 4221 (2009)

    Article  Google Scholar 

  29. L.W. Chong, H.T. Chien, Y.L. Lee, J. Power Sources 195, 5109 (2010)

    Article  Google Scholar 

  30. G. Zhu, L.K. Pan, T. Xu, Z. Sun, ACS Appl. Mater. Interfaces 3, 1472 (2011)

    Article  Google Scholar 

  31. J. Bisquert, F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, J. Gimenez, J. Phys. Chem. C 113, 17278 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. JB-ZR1137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Lin, Y., Lin, Y. et al. Synthesis of hierarchical nanowires-based TiO2 spheres for their application as the light blocking layers in CdS/CdSe co-sensitized solar cells. J Mater Sci: Mater Electron 26, 693–699 (2015). https://doi.org/10.1007/s10854-014-2451-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2451-8

Keywords

Navigation