Skip to main content
Log in

Solar water splitting for hydrogen production with Fe2O3 nanotubes prepared by anodizing method: effect of anodizing time on performance of Fe2O3 nanotube arrays

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Self-organized iron oxide nanotubes were successfully prepared on the iron foils by a simple electrochemical anodization method in NH4F organic electrolyte. The Fe2O3 nanotubes were characterized by field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, UV–vis absorbance spectra, and X-ray diffraction spectroscopy. Scanning electron microscopy images show that dependent upon the anodizing time, the pore diameters range from 30 to 45 nm. Crystallization and structural retention of the synthesized structure are achieved upon annealing the initial amorphous sample in oxygen atmosphere at 450 °C for 1 h. The crystallized nanoporous film, having a 2.04 eV bandgap, exhibited a maximum photocurrent density of 0.68 mA cm−2 in 1 M NaOH at 0.5 V versus Ag/AgCl. The current potential characteristics showed that the water-splitting photocurrent strongly depends on the anodizing time and its increases with anodization time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  Google Scholar 

  2. S.C. Moon, H. Mametsuka, S. Tabata, E. Suzuki, Catal. Today 58, 125 (2000)

    Article  Google Scholar 

  3. R. Liu, Y. Lin, L.Y. Chou, S.W. Sheehan, W. He, F. Zhang, Angew. Chem. Int. Ed. 50, 499 (2011)

    Article  Google Scholar 

  4. N. Chouhan, C.L. Yeh, S.F. Hu, R.S. Liu, W.S. Chang, K.H. Chen, Chem. Commun. 47, 3493 (2011)

    Article  Google Scholar 

  5. Y.H. Ng, A. Iwase, A. Kudo, R. Amal, J. Phys. Chem. Lett. 1, 2607 (2010)

    Article  Google Scholar 

  6. P. Chatchai, Y. Murakami, S.Y. Kishioka, A.Y. Nosaka, Y. Nosaka, Electrochim. Acta 54, 1147 (2009)

    Article  Google Scholar 

  7. R. van de Krol, Y. Liang, J. Schoonman, J. Mater. Chem. 18, 2311 (2008)

    Article  Google Scholar 

  8. J. Hensel, G. Wang, Y. Li, J.Z. Zhang, Nano Lett. 10, 478 (2010)

    Article  Google Scholar 

  9. G. Rahman, O.S. Joo, Int. J. Hydrogen Energy 37, 13989 (2012)

    Article  Google Scholar 

  10. A. Kay, I. Cesar, M. Grätzel, J. Am. Chem. Soc. 128, 15714 (2006)

    Article  Google Scholar 

  11. E.L. Miller, D. Paluselli, B. Marsen, R.E. Rocheleau, Sol. Energ. Mat. Sol. C. 88, 131 (2005)

    Article  Google Scholar 

  12. C.J. Sartoretti, B.D. Alexander, R. Solarska, W.A. Rutkowska, J. Augustynski, R. Cerny, J. Phys. Chem. B. 109, 13685 (2005)

    Article  Google Scholar 

  13. V.M. Aroutiounian, V.M. Arakelyan, G.E. Shahnazaryan, G.M. Stepanyan, E.A. Khachaturyan, H. Wang, Sol. Energy 80, 1098 (2006)

    Article  Google Scholar 

  14. Y. Liu, D.P. Wang, Y.X. Yu, W.D. Zhang, Int. J. Hydrogen Energy 37, 9566 (2012)

    Article  Google Scholar 

  15. C.Y. Lee, L. Wang, Y. Kado, R. Kirchgeorg, P. Schmuki, Electrochem. Commun. 34, 308 (2013)

    Article  Google Scholar 

  16. K. Sivula, F. Le Formal, M. Grätzel, Chem. Sun. Chem. 4, 432 (2011)

    Article  Google Scholar 

  17. L. Wang, C.Y. Lee, P. Schmuki, J. Mater. Chem. A. 1, 212 (2013)

    Article  Google Scholar 

  18. S. Grigorescu, C.Y. Lee, K. Lee, S. Albu, I. Paramasivam, I. Demetrescu, P. Schmuki, Electrochem. Commun. 23, 59 (2012)

    Article  Google Scholar 

  19. Z. Zhang, M.F. Hossain, T. Takahashi, Appl Catal B: Environ. 95, 423 (2010)

    Article  Google Scholar 

  20. D.D. Archibald, S. Mann, Nature 364, 430 (1993)

    Article  Google Scholar 

  21. J. Chen, L. Xu, W. Li, X. Gou, Adv. Mater. 17, 582 (2005)

    Article  Google Scholar 

  22. H.E. Parkasam, O.K. Varghese, M. Paulose, G.K. Mor, C.A. Grimes, Nanotechnology. 17, 4285 (2006)

    Article  Google Scholar 

  23. S.K. Mohapatra, S.E. John, S. Banerjee, M. Misra, Chem. Mater. 21, 3048 (2009)

    Article  Google Scholar 

  24. T.J. LaTempa, X.J. Feng, M. Paulose, C.A. Grimes, J. Phys. Chem. C 113, 16293 (2009)

    Article  Google Scholar 

  25. C.Y. Chang, C.H. Wang, C.J. Tseng, K.W. Cheng, L.W. Hourng, B.T. Tsai, Int. J. Hydrogen Energy 37, 13616 (2012)

    Article  Google Scholar 

  26. A. Elshabini-Raid, F. Barlow, Thin Film Technology Handbook (McGraw- Hill, New York, 1998)

    Google Scholar 

  27. J.Y. Kim, H. Jun, S.J. Hong, H.G. Kim, J.S. Lee, Int. J. Hydrogen Energy 36, 9462 (2011)

    Article  Google Scholar 

  28. C.S. Enache, Y.Q. Liang, R. van de Krol, Thin Solid Films 520, 1034 (2011)

    Article  Google Scholar 

  29. X. Lian, X. Yang, S. Liu, Y. Xu, C. Jiang, J. Chen, Appl. Surf. Sci. 258, 2307 (2012)

    Article  Google Scholar 

  30. A. Bak, W. Choi, H. Park, Appl. Catal. B: Environ. 110, 207 (2011)

    Article  Google Scholar 

  31. A.A. Tahir, K.G.U. Wijayanth, J. Photoch. Photobio. A 216, 119 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Mohsen Momeni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momeni, M.M., Ghayeb, Y. & Mohammadi, F. Solar water splitting for hydrogen production with Fe2O3 nanotubes prepared by anodizing method: effect of anodizing time on performance of Fe2O3 nanotube arrays. J Mater Sci: Mater Electron 26, 685–692 (2015). https://doi.org/10.1007/s10854-014-2450-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2450-9

Keywords

Navigation