Skip to main content
Log in

Fabrication of Y2O2S:Eu3+ hollow nanofibers by sulfurization of Y2O3:Eu3+ hollow nanofibers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Y2O3:Eu3+ hollow nanofibers were prepared by calcination of the electrospun PVP/[Y(NO3)3 + Eu(NO3)3] composite nanofibers, and then Y2O2S:Eu3+ hollow nanofibers were successfully synthesized by sulfurization of the as-obtained Y2O3:Eu3+ hollow nanofibers via a double-crucible method using sulfur powders as sulfur source. The samples were investigated in detail by X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy, and fluorescence spectroscopy. XRD analysis shows that the Y2O2S:Eu3+ hollow nanofibers are pure hexagonal phase with the space group of P\( \bar{3} \) m1. SEM observation indicates that as-prepared Y2O2S:Eu3+ nanofibers are obvious hollow-centered structure with the mean outer diameter of 184 ± 26 nm. Under the excitation of 260-nm ultraviolet light, the Y2O2S:Eu3+ hollow nanofibers exhibit red emissions of predominant emission peaks at 628 and 618 nm originated from 5D0 → 7F2 energy levels transitions of Eu3+ ions. The luminescent intensity of Y2O2S:Eu3+ hollow nanofibers is remarkably increased with the increase of doping concentration of Eu3+ ions and reaches a maximum at 3 mol % of Eu3+ ions. The emitting colors of the samples are located in the red region in CIE chromaticity coordinates diagram. The possible formation mechanism of Y2O2S:Eu3+ hollow nanofibers is also proposed. This preparation technique could be applied to prepare other rare earth oxysulfide hollow nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Yang, Y.L. Hou, Rare Met. 32(2), 105–112 (2013)

    Article  Google Scholar 

  2. J.B. Lian, X.D. Sun, J.G. Li, X.D. Li, Opt. Mater. 33(4), 596–600 (2011)

    Article  Google Scholar 

  3. J. Thomas, N. Hans, R. Cees, Angew. Chem. Int. Ed. 37(22), 3084–3103 (1998)

    Article  Google Scholar 

  4. Y. Tian, W.H. Cao, X.X. Luo, Y. Fu, J. Alloy. Compd. 433(1–2), 313–317 (2007)

    Article  Google Scholar 

  5. M. Nazarov, J. Moldavian, Phys. Sci. 12, 102–118 (2013)

    Google Scholar 

  6. R. Martín-Rodríguez, S. Fischer, A. Ivaturi, B. Froehlich, K.W. Krämer, J.C. Goldschmidt, B.S. Richards, Meijerink Andries. Chem. Mater. 25(9), 1912–1921 (2013)

    Article  Google Scholar 

  7. P.D. Han, X.G. Huang, Q.T. Zhang, Adv. Mater. Res. 197, 558–562 (2011)

    Article  Google Scholar 

  8. Y.J. Li, M.W. Wang, L.D. Zhang, D. Gao, S.X. Liu, Int. J. Min. Met. Mater. 20(10), 972–977 (2013)

    Article  Google Scholar 

  9. O.Y. Manashirov, A.N. Georgobiani, V.B. Gutan, E.M. Zvereva, A.N. Lobanov, Inorg. Mater. 48(7), 721–726 (2012)

    Article  Google Scholar 

  10. T.W. Chou, S. Mylswamy, R.S. Liu, S.Z. Chuang, Solid State Commun. 136(4), 205–209 (2005)

    Article  Google Scholar 

  11. T.A. Trottier, H.C. Swart, S.L. Jones, J.S. Sebastian, P.H. Holloway, J. Soc. Inf. Disp. 4(4), 351–355 (1996)

    Article  Google Scholar 

  12. D. Liu, P. Huang, L. Wang, G.W. Jiang, Ceram. Int. 40, 117–122 (2014)

    Article  Google Scholar 

  13. H. Chen, Y.C. Zhang, C. Chen, Z.L. Wang, N. Yao, Appl. Mech. Mater. 513, 138–142 (2014)

    Article  Google Scholar 

  14. L. Lu, Z.L. Wang, Adv. Mater. Res. 571, 129–132 (2012)

    Article  Google Scholar 

  15. L. Lu, Z.L. Wang, Y.D. Li, C.Y. Li, Y. Li, Y.Z. Du, Adv. Mater. Res. 774, 1001–1005 (2013)

    Article  Google Scholar 

  16. J. Thirumalai, R. Chandramohan, S. Valanarasu, T.A. Vijayan, S. Ezhilvizhian, Micro. Nano Lett. 6(8), 614–618 (2011)

    Google Scholar 

  17. P. Huang, F. Yang, L. Wang, X. Lei, Ceram. Int. 39(5), 5615–5621 (2013)

    Article  Google Scholar 

  18. C.E. Cui, H. Liu, P. Huang, L. Wang, J. Lumin. 149, 196–199 (2014)

    Article  Google Scholar 

  19. X.B. Han, X.G. Li, G.H. Peng, Z.H. Liang, X. Wang, Adv. Mater. Res. 652, 669–672 (2013)

    Article  Google Scholar 

  20. P.F. Ai, Y.L. Liu, L.Y. Xiao, H.J. Wang, J.X. Meng, Sci. Technol. Adv. Mat. 11(3), 1–5 (2010)

    Article  Google Scholar 

  21. Y. Fu, W.H. Cao, Y. Peng, X.X. Luo, M.M. Xing, J. Mater. Sci. 45(23), 6556–6561 (2010)

    Article  Google Scholar 

  22. P.D. Han, L. Zhang, L.X. Wang, Q.T. Zhang, J. Rare Earth 29(9), 849–854 (2011)

    Article  Google Scholar 

  23. X. Yan, G.R. Fern, R. Withnall, J. Silver, Nanoscale 5(3), 1091–1096 (2013)

    Article  Google Scholar 

  24. J.W. Zhang, N.H. Tan, Y.L. Liu, S.Q. Man, Chin. J. Inorg. Chem. 26(2), 229–232 (2010)

    Google Scholar 

  25. J. Zhang, C. Sun-Woo, S.S. Kim, J. Solid State Chem. 184(11), 3008–3013 (2011)

    Article  Google Scholar 

  26. J.X. Wang, X.T. Dong, Q.Z. Cui, G.X. Liu, W.S. Yu, J. Nanosci. Nanotechnol. 11(3), 2514–2519 (2011)

    Article  Google Scholar 

  27. D.Q. Shao, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, F.F. Zhang, L.M. Wang, J. Mater. Sci.-Mater. Electron. 24, 4263–4269 (2013)

    Article  Google Scholar 

  28. Q.Z. Cui, X.T. Dong, J.X. Wang, M. Li, J. Rare Earth 26(5), 664–669 (2008)

    Article  Google Scholar 

  29. D. Li, X.T. Dong, W.S. Yu, J.X. Wang, G.X. Liu, J. Mater. Sci.-Mater. Electron. 24, 3041–3048 (2013)

    Article  Google Scholar 

  30. Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, J. Xu, J. Mater. Chem. 22(29), 14438–14442 (2012)

    Article  Google Scholar 

  31. F. Bi, X.T. Dong, J.X. Wang, G.X. Liu, J. Mater. Sci.-Mater. Electron. (2014). doi:10.1007/s10854-014-2158-x

    Google Scholar 

  32. Q.L. Ma, W.S. Yu, X.T. Dong, J.X. Wang, G.X. Liu, Nanoscale 6, 2945–2952 (2014)

    Article  Google Scholar 

  33. S.J. Sheng, Q.L. Ma, X.T. Dong, N. Lv, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci.-Mater. Electron. 25, 2279–2286 (2014)

    Article  Google Scholar 

  34. B. Mirosław, S. Karol, M. Sebastian, G. Marek, Opt. Mater. 36(10), 1616–1621 (2014)

    Article  Google Scholar 

  35. A.A. Kader, M.M. Elkholy, J. Mater. Sci.-Mater. Electron. 1(2), 95–99 (1990)

    Article  Google Scholar 

  36. G. Blasse, Phys. Lett. A 28(6), 444–445 (1968)

    Article  Google Scholar 

  37. H.R. Che, X.T. Dong, L. Liu, J.X. Wang, Chin. Rare Earths 29(6), 11–16 (2008)

    Google Scholar 

  38. Y. Hou, X.T. Dong, J.X. Wang, G.X. Liu, L.H. Li, Chem. J. Chin. U. 32(2), 225–230 (2011)

    Google Scholar 

  39. W.W. Ma, X.T. Dong, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci. 48(6), 2557–2565 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC 50972020, 51072026), Specialized Research Fund for the Doctoral Program of Higher Education (20102216110002, 20112216120003), the Science and Technology Development Planning Project of Jilin Province (Grant Nos. 20130101001JC, 20070402), the Science and Technology Research Project of the Education Department of Jilin Province during the eleventh five-year plan period(Under Grant No. 2010JYT01), Key Research Project of Science and Technology of Ministry of Education of China (Grant No. 207026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangting Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Pan, M., Lv, Y. et al. Fabrication of Y2O2S:Eu3+ hollow nanofibers by sulfurization of Y2O3:Eu3+ hollow nanofibers. J Mater Sci: Mater Electron 26, 677–684 (2015). https://doi.org/10.1007/s10854-014-2449-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2449-2

Keywords

Navigation