Skip to main content
Log in

On the surface passivation of c-silicon by RF sputtered Al2O3 for solar cell application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this contribution we investigated the surface passivation properties of Al2O3 deposited by RF sputtering on c-silicon substrate. MIS capacitors with Al2O3 as dielectric were fabricated and characterized. Post deposition anneal in N2 ambient for 20 min was carried out to activate the passivation. Fixed charge, interface defect density and minority carrier lifetimes were evaluated from the C-V, G-V and C-t characteristics of the MIS capacitor respectively to study the level of surface passivation. It has been demonstrated that by optimizing various sputtering process parameters such as power and base pressure etc. high level of passivation can be achieved for RF sputtered alumina. High level passivation of Al2O3 is attributed to high minority carrier lifetimes. Negative fixed charge density (Qf) as high as 5 × 1012 cm−2 and interface defect density (Dit) as low as 1.85 × 1011 eV−1 cm−2 have been achieved. Minority carrier lifetime was observed to vary from 70 to 290 μs for various sputter deposition and annealing processing condition. The obtained carrier lifetimes are comparable to the value achieved for atomic layer deposited Al2O3 which is generally considered to be favorable process for passivation of solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Saint-Cast, J. Benick, D. Kania, L. Weiss, M. Hofmann, J. Rentsch, R. Preu, S.W. Glunz, IEEE Electron Device Lett. 31, 695–697 (2010)

    Article  Google Scholar 

  2. B. Hoex, J. Schmidt, P. Pohl, M.C.M. van de Sanden, W.M.M. Kessels, J. Appl. Phys. 104, 044903 (2008)

    Article  Google Scholar 

  3. Z. Liang, D. Chen, C. Feng, J. Cai and H. Shen, International conference on surface and interface science and engineering, 18, 51–55 (2011)

  4. H.-B. Qiu, H.-Q. Li, B.-W. Liu, X. Zhang, and Z.-N. Shen, Chin. Phys. B, 23 (2014)

  5. M.Z. Rahman and S.I. Khan, Mater. Renew Sustain Energy, 1–11 (2012)

  6. B. Hoex, J.J.H. Gielis, M.C.M. van de Sanden, W.M.M. Kessels, J. Appl. Phys. 104, 113703 (2008)

    Article  Google Scholar 

  7. F. Werner, B. Veith, D. Zielk, L. Kühnemund, C. Tegenkamp, J. Appl. Phys. 109, 113701 (2011)

    Article  Google Scholar 

  8. V. Naumann, M. Otto, R.B. Wehrspohn, M. Werner, C. Hagendorf, Energy Procedia 27, 312–318 (2012)

    Article  Google Scholar 

  9. H. Goverde, B. Vermang, A. Morato, J. John, J. Horzel, G. Meneghesso, J. Poortmans, Energy Procedia 27, 355–360 (2012)

    Article  Google Scholar 

  10. A.G. Aberle, R. Hezel, Prog. Photovoltaics Res. Appl. 5, 29–50 (1997)

    Article  Google Scholar 

  11. A.G. Aberle, Sol. Energy Mater. Sol. Cells 65, 239–248 (2001)

    Article  Google Scholar 

  12. J. Schmidt1, M. Kerr and A. Cuevas, Semicond. Sci. Technol. 16, 164–170 (2001)

  13. J. Schmidt, F. Werner, B. Veith, D. Zielke, S. Steingrube, P.P. Altermatt, S. Gatza, T. Dullweber, R. Brendel, Energy Procedia 15, 30–39 (2011)

    Article  Google Scholar 

  14. B. Hoex, S.B.S. Heil, E. Langereis, M.C.M. van de Sanden, W.M.M. Kessels, Appl. Phys. Lett. 89, 042112 (2006)

    Article  Google Scholar 

  15. G. Dingemans, P. Engelhart, R. Seguin, M.M. Mandoc, M.C.M. van de Sanden and W.M.M. Kessels, 35th IEEE PVSC, 20–25 June 2010

  16. B. Liao, R. Stangl, T. Mueller, F. Lin, C.S. Bhatia et al., J. Appl. Phys. 113, 024509 (2013)

    Article  Google Scholar 

  17. G. Agostinelli, A. Delabiea, P. Vitanov, Z. Alexieva, H.F.W. Dekkers, S. De Wolf, G. Beaucarn, Sol. Energy Mater. Sol. Cells 90, 3438–3443 (2006)

    Article  Google Scholar 

  18. J. Frascoaroll, G. Seguini, E. Cianci, D. Saynova, J. van Roosmalen and M. Perego, physica status solidi A 210, 732–736 (2013)

  19. M. Bhaisare, A. Misra, A. Kottantharayil, IEEE J. Photovolt. 3, 1–6 (2013)

    Article  Google Scholar 

  20. G. Dingemans and W.M.M. Kessels, J. Vac. Sci. Technol. A, 30, 040802-1–040802-27 (2012)

  21. F. Werner, W. Stals, R. Görtzen, B. Veith, R. Brendel, J. Schmidt, Energy Procedia 8, 301–306 (2011)

    Article  Google Scholar 

  22. X. Zhang, A. Cuevas, and A. Thomson, IEEE J. Photovolt. 3, no. 1 (2013)

  23. T.-T. Li, A. Cuevas, Phys. Status Solidi RRL 3(5), 160–162 (2009)

    Article  Google Scholar 

  24. C.-Y. Wei, H.H. Woodbury, IEEE Trans. Electron Devices 32(5), 957–964 (1985)

    Article  Google Scholar 

  25. F.P. Heiman, IEEE Trans. Electron Devices 11, 781–784 (1967)

    Article  Google Scholar 

  26. R.F. Pierret, IEEE Trans. Electron Devices 25, 1157–1159 (1978)

    Article  Google Scholar 

  27. N. Konofaos, Microelectron. J. 35, 421–425 (2004)

    Article  Google Scholar 

  28. http://wiki.epfl.ch/carplat/documents/HP_AN_322.pdf. Accessed 14 June 2014

  29. G. Lucovsky, J.C. Phillips, M.F. Thorpe, in Proceedings of the Characterisation and Metrology for ULSI Technology, 2000, pp. 154–158

  30. B. Hoex, J. Schmidt, M.C.M. van de Sanden and W.M.M. Kessels, 33rd IEEE Photovoltaic Specialists Conference, (2008)

  31. J. Benick, A. Richter, T.-T.A. Li, N.E. Grant, K.R. McIntosh, Y. Ren, K.J. Weber, M. Hermle and S.W. Glunz, 35th IEEE Photovoltaic Specialists Conference, (2010)

  32. F. Kersten, A. Schmid, S. Bordihn, J.W. Müller, J. Heitmann, Energy Procedia 38, 843–848 (2013)

    Article  Google Scholar 

  33. J.D. Plummer, M.D. deal and P.B. Griffin, “Silicon VLSI Technology”,Upper Saddle River, New Jersey, Prentice Hall Inc. (2000)

  34. A. Chaoumead, Y.-M. Sung, and D.-J (Kwak, Advances in Condensed Matter Physics, 2012). Article ID 651587

    Google Scholar 

  35. P.H. Lu, K. Wang, Z. Lu, A.J. Lennon, and S.R. Wenham, IEEE J. Photovolt. (2012)

  36. S. Chen, L. Tao, L. Zeng, and R. Hong, Int. J. Photoenergy, article ID 792357 (2013)

  37. A. Rao, A. Dwivedi, M. Goswami, B.R. Singh, Mater. Sci. Semicond. Process. 19, 145–149 (2014)

    Article  Google Scholar 

  38. C.H. Shin, D.W. Kwak, D.H. Kim, D.W. Le1, S. Huh, K.S. Park, and H.Y. Cho, 35th IEEE Photovoltaic Specialists Conference (PVSC), (2010)

Download references

Acknowledgments

The authors would like to express their sincere thanks to Prof. Somenath Biswas, Director, IIIT, Allahabad for his constant support and encouragement. Thanks are also due to Mr. Aswath Rao, Mr. Upendra Joshi and Mr. Pramod Tripathi for their help and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akansha Bansal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, A., Srivastava, P. & Singh, B.R. On the surface passivation of c-silicon by RF sputtered Al2O3 for solar cell application. J Mater Sci: Mater Electron 26, 639–645 (2015). https://doi.org/10.1007/s10854-014-2439-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2439-4

Keywords

Navigation