Advertisement

Effect of the dopant salt on the optical parameters of PVA:NaNO3 solid polymer electrolyte

  • Fahmi Fariq MuhammadEmail author
  • Shujahadeen B. Aziz
  • Sarkawt A. Hussein
Article

Abstract

In this work we investigate the impact of the dopant salt on the optical constants of PVA:NaNO3 composite system. Samples with various NaNO3 dopant contents were prepared by casting technique using distilled water as a solvent. The refractive index (n), extinction coefficient (k), dielectric constants (ɛ r and ɛ i ) and complex optical conductivity (σ*) for the systems have been investigated. Through applying Tauc’s equation and Wemple–DiDomenico (W–D) model, the optical energy gap (E g ) and Urbach tail energies (E u ) were correlated and analyzed. The exponent value (n) in Tauc’s equation has been calculated numerically and it was utilized to understand the nature of electronic transitions. The change in the refractive index from 1.14 for pure PVA to 2.25 for 12 % doped PVA was noticed, indicating the presence of few interactions between photon and electrons. This doping effect has considerably increased the real dielectric constant from 1.30 for pure PVA to 5.10 for 12 % doped PVA. The results showed that dispersion region of refractive index obeyed the W–D model.

Keywords

NaNO3 Polymer Electrolyte Optical Conductivity Polymer Electrolyte Film Refractive Index Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors acknowledge University of Sulaimani for the financial support granted to produce this research work.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    S.B. Aziz, Z.H.Z. Abidin, A.K. Arof, Phys. B 405, 4429–4433 (2010)CrossRefGoogle Scholar
  2. 2.
    M.A.K. Lakshman Dissanayake, Ionics 10, 221–225 (2004)CrossRefGoogle Scholar
  3. 3.
    J. Lee, Y. Lee, B. Bhattacharya, Y.-C. Nho, J.-K. Park, J. Solid State Electrochem. 14, 1445–1449 (2010)CrossRefGoogle Scholar
  4. 4.
    G. Korotcenkov, in Solid Electrolytes for Detecting Specific Gases. Handbook of Gas Sensor Materials (Springer, New York, 2013), pp. 197–220Google Scholar
  5. 5.
    S.B. Aziz, Z.H.Z. Abidin, Mater. Chem. Phys. 144, 280–286 (2014)CrossRefGoogle Scholar
  6. 6.
    S.L. Agrawal, M. Singh, M. Tripathi, M. Dwivedi, K. Pandey, J. Mater. Sci. 44, 6060–6068 (2009)CrossRefGoogle Scholar
  7. 7.
    S.B. Aziz, Iran. Polym. J. 22, 877–883 (2013)CrossRefGoogle Scholar
  8. 8.
    F. Yuan, Z. Peng, J.M. Liu, Mater. Sci. Eng. B 117, 265–270 (2005)CrossRefGoogle Scholar
  9. 9.
    P.B. Bhargav, V.M. Mohan, A.K. Sharma, V.V.R.N. Rao, Int. J. Polym. Mater. Polym. Biomater. 56, 579–591 (2007)CrossRefGoogle Scholar
  10. 10.
    M.A. Ahmed, M.S. Abo-Ellil, J. Mater. Sci. Mater. Electron. 9, 391–395 (1998)CrossRefGoogle Scholar
  11. 11.
    M.A. Khaled, M.M. El-Ocker, H.S. Risk, H. Elzahed, J. Mater. Sci. Mater. Electron. 6, 424–426 (1995)CrossRefGoogle Scholar
  12. 12.
    E.A. Costner, B.K. Long, C. Navar, S. Jockusch, X. Lei, P. Zimmerman, A. Campion, N.J. Turro, C.G. Willson, J. Phys. Chem. A 113, 9337–9347 (2009)CrossRefGoogle Scholar
  13. 13.
    S. Mahendia, A.K. Tomar, R.P. Chahal, P. Goyal, S. Kumar, J. Phys. D Appl. Phys. 44, 205105 (2011)CrossRefGoogle Scholar
  14. 14.
    H.N. Chandrakala, B. Ramaraj, Shivakumaraiah, Siddaramaiah, J. Alloys Compd 586, 333–342 (2014)CrossRefGoogle Scholar
  15. 15.
    C.U. Devi, A.K. Sharma, V.V.R.N. Rao, Mater. Lett. 56, 167–174 (2002)CrossRefGoogle Scholar
  16. 16.
    S. Jana, R. Thapa, R. Maity, K.K. Chattopadhyay, Phys. E 40, 3121–3126 (2008)CrossRefGoogle Scholar
  17. 17.
    A. Kharazmi, E. Saion, N. Faraji, R.M. Hussin, W.M.M. Yunus, Radiat. Phys. Chem. 97, 212–216 (2014)CrossRefGoogle Scholar
  18. 18.
    W.H. Osman, J. Mater. Sci. Mater. Electron. 8, 57–61 (1997)CrossRefGoogle Scholar
  19. 19.
    F.F. Muhammad, K. Sulaiman, Measurement 44, 1468–1474 (2011)CrossRefGoogle Scholar
  20. 20.
    F.F. Muhammad, J. Technol. Innov. Renew. Energy 3, 1–8 (2014)CrossRefGoogle Scholar
  21. 21.
    S.B. Aziz, S. Hussein, A.M. Hussein, S.R. Saeed, Int. J. Metals (2013)Google Scholar
  22. 22.
    M.K. Yang, E.W. Tokarsky, R.H. French, MOEMS 7, 033010–033019 (2008)CrossRefGoogle Scholar
  23. 23.
    O. Guirguis, M.H. Moselhey, J. Mater. Sci. 46, 5775–5789 (2011)CrossRefGoogle Scholar
  24. 24.
    M. Abdelaziz, M.M. Ghannam, Phys. B 405, 958–964 (2010)CrossRefGoogle Scholar
  25. 25.
    Z.Z. You, G.J. Hua, Vacuum 83, 984–988 (2009)CrossRefGoogle Scholar
  26. 26.
    K.R. Rajesh, C.S. Menon, Mater. Lett. 53, 329–332 (2002)CrossRefGoogle Scholar
  27. 27.
    G.B. Sakr, I.S. Yahia, M. Fadel, S.S. Fouad, N. Romčević, J. Alloy. Compd. 507, 557–562 (2010)CrossRefGoogle Scholar
  28. 28.
    F.F. Muhammad, A.I. Abdul Hapip, K. Sulaiman, K. J. Organomet. Chem. 695, 2526–2531 (2010)CrossRefGoogle Scholar
  29. 29.
    E. Sheha, H. Khoder, T.S. Shanap, M.G. El-Shaarawy, M.K.E. Mansy, Optik 123, 1161–1166 (2012)CrossRefGoogle Scholar
  30. 30.
    H.M. El-Mallah, N.A. El-Ghamaz, M.A. Waly, J. Phys. D Appl. Phys. 43, 455407 (2010)CrossRefGoogle Scholar
  31. 31.
    M. DiDomenico, S.H. Wemple, J. Appl. Phys. 40, 720–734 (1969)CrossRefGoogle Scholar
  32. 32.
    S.H. Wemple, M. DiDomenico, Phys. Rev. B 3, 1338–1351 (1971)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Fahmi Fariq Muhammad
    • 1
    Email author
  • Shujahadeen B. Aziz
    • 2
  • Sarkawt A. Hussein
    • 2
  1. 1.Department of Physics, Faculty of Science and HealthKoya UniversityKoyaKurdistan Regional Government-Iraq
  2. 2.Advanced Materials Research Laboratory, Department of Physics, Faculty of Science and Science EducationUniversity of SulaimaniSulaimani CityKurdistan Regional Government-Iraq

Personalised recommendations