Skip to main content
Log in

Significant conductivity enhancement of PEDOT:PSS films treated with lithium salt solutions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An effective method to significantly enhance the electrical conductivity of PEDOT:PSS films through a treatment with various aqueous solutions of lithium salts such as LiClO4, Li2SO4 and LiNO3 etc., is presented in this paper. The maximum electrical conductivity of PEDOT:PSS film treated with LiClO4 could be up to 522 S cm−1, which was enhanced by a factor of 2,610 compared to that of pure PEDOT:PSS film (0.2 S cm−1). The FTIR spectra characterization was performed and suggested that the chemical structure of PEDOT:PSS didn’t change after the treatment. Remarkable improvement in carrier mobility was a key reason for the increase in the electrical conductivity. The highest carrier mobility of the PEDOT:PSS film by LiClO4 treatment could reach 3.8 cm2/Vs, approximately 15 times higher than that of pure PEDOT:PSS film with a value of 0.25 cm2/Vs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.M. Nardes, M. Kemerink, R.A.J. Janssen, J.A.M. Bastiaansen, N.M.M. Kiggen, B.M.W. Langeveld, A.J.J.M. van Breemen, M.M. de Kok, Adv. Mater. 19, 1196–1200 (2007)

    Article  Google Scholar 

  2. C. Winder, N.S. Sariciftci, J. Mater. Chem. 14, 1077–1086 (2004)

    Article  Google Scholar 

  3. S.I. Cho, W.J. Kwon, S. Choi, P. Kim, S. Park, J. Kim, S.J. Son, R. Xiao, S. Kim, S.B. Lee, Adv. Mater. 17, 171 (2005)

    Article  Google Scholar 

  4. D.T. McQuade, A.E. Pullen, T.M. Swager, Chem. Rev. 100, 2537–2574 (2000)

    Article  Google Scholar 

  5. M.J. Marsella, R.J. Reid, S. Estassi, L.S. Wang, J. Am. Chem. Soc. 124, 12507–12510 (2002)

    Article  Google Scholar 

  6. I.F. Perepichka, D.F. Perepichka, H. Meng, F. Wudl, Adv. Mater. 17, 2281–2305 (2005)

    Article  Google Scholar 

  7. F. Garnier, Chem. Phys. 227, 253 (1998)

    Article  Google Scholar 

  8. W.F. Zhang, B.F. Zhao, Z.C. He, X.M. Zhao, H.T. Wang, S.F. Yang, H.B. Wu, Y. Cao, Energy Environ. Sci. 6, 1956–1964 (2013)

    Article  Google Scholar 

  9. Y. Du, S.Z. Shen, K.F. Cai, P.S. Casey, Prog. Polym. Sci. 37, 820–841 (2012)

    Article  Google Scholar 

  10. X. Strakosas, M. Sessolo, A. Hama, J. Rivnay, E. Stavrinidou, G.G. Malliaras, R.M. Owens, J. Mater. Chem. B 2, 2537–2545 (2014)

    Article  Google Scholar 

  11. Z.F. Wang, J.K. Xu, Y.Y. Yao, L. Zhang, Y.P. Wen, H.J. Song, D.H. Zhu, Sens. Actuat. B-Chem. 196, 357–369 (2014)

    Article  Google Scholar 

  12. E. Nasybulin, S. Wei, M. Cox, I. Kymissis, K. Levon, J. Phys. Chem. C 115, 4307–4314 (2011)

    Article  Google Scholar 

  13. Y.J. Xia, J.Y. Ouyang, J. Mater. Chem. 21, 4927–4936 (2011)

    Article  Google Scholar 

  14. P.A. Levermore, R. Jin, X.H. Wang, L.C. Chen, D.D.C. Bradley, J.C. de Mello, J. Mater. Chem. 18, 4414–4420 (2008)

    Article  Google Scholar 

  15. S.C. Luo, H. Xie, N.Y. Chen, H.H. Yu, ACS Appl. Mater. Inter. 1, 414–419 (2009)

    Google Scholar 

  16. E.G. Kim, J.L. Bre´das, J. Am. Chem. Soc. 130, 16880–16889 (2008)

    Article  Google Scholar 

  17. X. Crispin, F.L.E. Jakobsson, A. Crispin, P.C.M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W.R. Salaneck, M. Berggren, Chem. Mater. 18, 4354–4360 (2006)

    Article  Google Scholar 

  18. A. Saeki, Y. Koizumi, T. Aida, S. Seki, Accounts Chem. Res. 45, 1193–1202 (2012)

    Article  Google Scholar 

  19. D. Alemu, H.Y. Wei, K.C. Hod, C.W. Chu, Energy Environ. Sci. 5, 9662–9671 (2012)

    Article  Google Scholar 

  20. C.C. Liu, B.Y. Lu, J. Yan, J.K. Xu, R.R. Yue, Z.J. Zhu, S.Y. Zhou, X.J. Hu, Z. Zhang, P. Chen, Synth. Met. 160, 2481–2485 (2010)

    Article  Google Scholar 

  21. P.A. Levermore, L. Chen, X. Wang, R. Das, D.D.C. Bradley, Adv. Mater. 19, 2379–2385 (2007)

    Article  Google Scholar 

  22. J.Y. Ouyang, C.W. Chu, F.C. Chen, Q. Xu, Y. Yang, Adv. Funct. Mater. 15, 203–208 (2005)

    Article  Google Scholar 

  23. J. Huang, P.F. Miller, J.S. Wilson, A.J. de Mello, J.C. de Mello, D.D.C. Bradley, Adv. Funct. Mater. 15, 290–296 (2005)

    Article  Google Scholar 

  24. A.M. Nardes, M. Kemerink, M.M. de Kok, E. Vinken, K. Maturova, R.A.J. Janssen, Org. Electron. 9, 727–734 (2008)

    Article  Google Scholar 

  25. Y. Zhou, H. Cheun, S. Choi, J.W.J. Potscavage, C. Fuentes-Hernandez, B. Kippelen, Appl. Phys. Lett. 97, 153304 (2010)

    Article  Google Scholar 

  26. Y. Zhou, F. Zhang, K. Tvingstedt, S. Barrau, F. Li, W. Tian, O. Inganas, Appl. Phys. Lett. 92, 233308 (2008)

    Article  Google Scholar 

  27. M. Reyes-Reyes, I. Cruz-Cruz, R. Lopez-Sandoval, J. Phys. Chem. C 114, 20220–20224 (2010)

    Article  Google Scholar 

  28. C. Badre, L. Marquant, A.M. Alsayed, L.A. Hough, Adv. Funct. Mater. 22, 2723–2727 (2012)

    Article  Google Scholar 

  29. C.J. Ko, Y.K. Lin, F.C. Chen, C.W. Chu, Appl. Phys. Lett. 90, 063509 (2007)

    Article  Google Scholar 

  30. Y.J. Xia, H.M. Zhang, J.Y. Ouyang, J. Mater. Chem. 20, 9740–9747 (2010)

    Article  Google Scholar 

  31. Y.J. Xia, J.Y. Ouyang, Org. Electron. 11, 1129–1135 (2010)

    Article  Google Scholar 

  32. Y.J. Xia, J.Y. Ouyang, ACS Appl. Mater. Inter. 2, 474–483 (2010)

    Article  Google Scholar 

  33. Y.J. Xia, J.Y. Ouyang, Macromolecules 42, 4141–4147 (2009)

    Article  Google Scholar 

  34. Y.J. Xia, K. Sun, J.Y. Ouyang, Adv. Mater. 24, 2436–2440 (2012)

    Article  Google Scholar 

  35. C.Y. Chiu, H.W. Chen, S.W. Kuo, C.F. Huang, F.C. Chang, Macromolecules 37, 8424–8430 (2004)

    Article  Google Scholar 

  36. A.E. Wolfenson, R.M. Torresi, T.J. Bonagamba, M.A. De Paoli, H. Panepucci, J. Phys. Chem. B 101, 3469–3473 (1997)

    Article  Google Scholar 

  37. D. Zhou, X.G. Mei, J.Y. Ouyang, J. Phys. Chem. C 115, 16688–16694 (2011)

    Article  Google Scholar 

  38. B.H. Fan, X.G. Mei, J.Y. Ouyang, Macromolecules 41, 5971 (2008)

    Article  Google Scholar 

  39. D.M. Rowe (Ed.), CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, FL, 1995) (Chapters 4 and 5)

  40. Y. Hiroshige, M. Ookawa, N. Toshima, Synth. Met. 157, 467–474 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (51203070 & 51303073), Jiangxi Provincial Department of Education (GJJ13565) and Jiangxi Provincial Department of Science and Technology (20142BAB216032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingkun Xu or Congcong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Song, H., Xu, J. et al. Significant conductivity enhancement of PEDOT:PSS films treated with lithium salt solutions. J Mater Sci: Mater Electron 26, 429–434 (2015). https://doi.org/10.1007/s10854-014-2417-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2417-x

Keywords

Navigation