Skip to main content
Log in

Direct real-time observation on nanoscale mechanical behavior of freestanding GaN short nano-bridge

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper describes a novel technique to design, fabricate, test, and real-time monitor the freestanding GaN nano-bridge over homogeneous substrate. Stress–strain response and Young’s modulus of GaN nano-bridge for 1.2 μm in span with aspect ratio of ~5 can be extracted by observing mechanical load–deflection response video images and load–displacement curve using instrumented nanoindentation in transmission electron microscopy. A two-dimensional finite element model showed that a positive agreement between principal stresses varies in a beam by experimental observation and stress contour versus indentation depth by numerical simulation. This method could also be applied on the wide range of nano-materials to identify the mechanical response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Y. Zhu, H.D. Espinosa, Proc. Natl. Acad. Sci. 102, 514503 (2009)

    Google Scholar 

  2. J. Schweitz, MRS Bull. 17, 34 (1992)

    Article  Google Scholar 

  3. H.D. Espinosa, B.C. Prorok, M.A. Fischer, J. Mech. Phys. Solids 51, 47 (2003)

    Article  Google Scholar 

  4. G.M. Pharr, W.C. Oliver, MRS Bull. 17, 28–33 (1992)

    Article  Google Scholar 

  5. S.M. Han, R. Saha, W.D. Nix, Acta Mater. 54, 1571 (2006)

    Article  Google Scholar 

  6. M.J. Kobrinsky, E.R. Deutsch, S.D. Senturia, IEEE J. Microelectromech. Syst. 9, 361 (2000)

    Article  Google Scholar 

  7. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)

    Article  Google Scholar 

  8. S.C. Hung, J. Electrochem. Soc. 158, H1265 (2011)

    Article  Google Scholar 

  9. M.A. Moram, Z.H. Barber, C.J. Humphreys, J. Appl. Phys. 102, 023505 (2007)

    Article  Google Scholar 

  10. S.C. Hung, Y.K. Su, T.H. Fang, S.J. Chang, L.W. Ji, Nanotechnology 16, 2203 (2005)

    Article  Google Scholar 

  11. S.C. Hung, Y.K. Su, T.H. Fang, S.J. Chang, Appl. Phys. A84, 439 (2006)

    Article  Google Scholar 

  12. L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Pergamon, Oxford, 1970)

    Google Scholar 

  13. S.P. Timoshenko, S. Woinowsky-krieger, Theory of Plates and Shells (McGraw-Hill, New York, 1959), pp. 245–256

    Google Scholar 

  14. A. Heidelberg, L.T. Ngo, B. Wu, M.A. Phillips, S. Sharma, T.I. Kamins, J.E. Sader, J.J. Boland, Nano Lett. 6, 1101 (2006)

    Article  Google Scholar 

  15. S. C. Hung, C. F. Yang, Y. C. Hsu, Int. J. Photoenergy, ArticleID 917360, 6 pp. doi:10.1155/2014/917360 (Volume 2014)

  16. K.C. Maner, M.R. Begley, W.C. Oliver, Acta Mater. 52, 5451 (2004)

    Article  Google Scholar 

  17. G. Yu, J. Cryst. Growth 701, 189–190 (1998)

    Google Scholar 

  18. S.O. Kucheyev, J.E. Bradby, J.S. Williams, C. Jagadish, M.R. Toth, M. Phillips, M.V. Swain, Appl. Phys. Lett. 77, 3373 (2000)

    Article  Google Scholar 

  19. V.I. Nikolaev, V.V. Shpeizman, B.I. Smirnov, Phys. Solid State 42, 437 (2000)

    Article  Google Scholar 

  20. S.R. Jian, T.H. Fang, D.S. Chuu, J. Electr. Mater. 32, 496 (2003)

    Article  Google Scholar 

  21. Z. Yang, R.N. Wang, S. Jia, D. Wang, B.S. Zhang, K.M. Lau, K.J. Chen, Appl. Phys. Lett. 88, 041913 (2006)

    Article  Google Scholar 

  22. J.G. Swadener, E.P. George, G.M. Pharr, J. Mech. Phys. Solids 50, 681 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council of Taiwan under Contract No. NSC 100-2221-E-158-002, MOST 103-2221-E-158-005 and the Shih Chien University Kaohsiung Campus USC-103-05-05013. Our thanks also goes to the Center for Micro/Nano Science and Technology, National Sun Yat-sen University, and Dr. C. S. Hung for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang-Chao Hung.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Video 1

A sequence of recording images showing stress contour and stress gradient corresponding to the indentation deformation stages experiment performed in TEM. There is nearly no residual deformation after full separation (GIF 6949 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hung, SC. Direct real-time observation on nanoscale mechanical behavior of freestanding GaN short nano-bridge. J Mater Sci: Mater Electron 26, 307–311 (2015). https://doi.org/10.1007/s10854-014-2400-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2400-6

Keywords

Navigation