Skip to main content

Advertisement

Log in

Novel-approach for fabrication of CdS thin films for photoelectrochemical solar cell application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In present report, we have successfully synthesized nanocrystalline nanosheet-like CdS thin films on ultrasonically cleaned bare and FTO-coated glass substrates by using self-organized arrested precipitation technique. The effect of annealing on opto-structural, morphological and electrical properties were studied by using UV–Vis–NIR spectroscopy, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) equipped with energy dispersive spectroscopy (EDS) analyzer, X-ray photoelectron spectroscopy (XPS), electrical conductivity and thermoelectric power measurement. The UV–Vis–NIR studies revealed that band gap energy is varied from 2.23–2.05 and 2.00 eV with increase in deposition time and post annealing temperature (373 K), respectively. Also, optical absorption data indicates transition mechanism type is direct and allowed. The XRD study revealed that films are nanocrystalline in nature and pure cubic crystal structure with crystallite size ranging from 61 to 86 nm. FESEM micrographs confirm material is well adherent, pin-hole free over entire substrate surface. XPS shows presence of Cd2+ and S2− ions and EDS confirms Stoichiometric film formation. Finally as deposited and annealed (372 K for 1 h) thin films were tested for their photoelectrochemical properties. PEC results revealed that the annealed CdS thin film shows 0.846 mA cm−2 short current density (J sc ) with 0.10 % highest conversion efficiency (η).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

References

  1. Y. Tak, S.J. Hong, J.S. Lee, K. Yong, J. Mater. Chem. 19, 5945 (2009)

    Article  Google Scholar 

  2. M. Yuan, D.B. Mitzi, Dalton Trans. 31, 6078 (2009)

  3. H. Mathieu, T. Richard, J. Allegre, P. Lefebvre, G. Arnaud, J. Appl. Phys. 77, 287 (1995)

    Article  Google Scholar 

  4. M.A. Barote, A.A. Yadav, E.U. Masumdar, Physica B 406, 1865 (2011)

    Article  Google Scholar 

  5. S.A. Jassim, A.A. Zumaila, G.A. Waly, Results Phys. 3, 173 (2013)

    Article  Google Scholar 

  6. N. Bao, L. Shen, T. Takata, K. Domen, A. Gupta, K. Yanagisawa, C.A. Grimes, J. Phys. Chem. C 111, 17527 (2007)

    Article  Google Scholar 

  7. S.G. Hickey, D.J. Riley, E.J. Tull, J. Phys. Chem. B 104, 7623 (2000)

    Article  Google Scholar 

  8. T. Hirai, K. Suzuki, I. Komasawa, J. Colloid Interface Sci. 244, 262 (2001)

    Article  Google Scholar 

  9. J. Zhai, L. Wang, D. Wang, H. Li, Y. Zhang, D.Q. He, T. Xie, ACS Appl. Mater. Interfaces 3, 2253 (2011)

    Article  Google Scholar 

  10. Y. Wu, T. Tamaki, T. Volotinen, L. Belova, K.V. Rao, J. Phys. Chem. Lett. 1, 89 (2010)

    Article  Google Scholar 

  11. S. Panigrahi, D. Bas, J. Colloid Interface Sci. 10, 364 (2011)

    Google Scholar 

  12. S. Girish Kumar, K.S.R. Koteswara Rao, Energy Environ. Sci. 7, 45 (2014)

    Article  Google Scholar 

  13. J. Heo, H. Ahn, R. Lee, Y. Han, D. Kim, Sol. Energy Mater. Sol. Cells 75, 193 (2003)

    Article  Google Scholar 

  14. C.J. Hibberd, K. Ernits, M. Kaelin, U. Muller, A.N. Tiwari, Prog. Photovolt. Res. Appl. 16, 585 (2008)

  15. K. Subbaramaiah, V.S. Raja, Sol. Energy Mater. Sol. Cells 1, 32 (1994)

    Google Scholar 

  16. P. O’Brien, Chemtronics 5, 61 (1991)

    Google Scholar 

  17. P.K.M. Bandaranayake, P.V.V. Jayaweera, K. Tennakone, Sol. Energy Mater. Sol. Cells 76, 57 (2003)

    Article  Google Scholar 

  18. S. Ray, R. Banerjee, A.K. Barua, J. Appl. Phys. 19, 1889 (1980)

    Article  Google Scholar 

  19. J.N. Ximello-Quiebras, G. Contreras-Puente, J. Aguilar-Herna, G. ndez, A. Santana-Rodriguez, R. Arias-Carbajal, Sol. Energy Mater. Sol. Cells 82, 263 (2004)

    Article  Google Scholar 

  20. B.S. Moon, J.H. Lee, H. Jung, Thin Solid Films 299, 511 (2006)

    Google Scholar 

  21. N.B. Pawar, S.S. Mali, M.M. Salunkhe, R.M. Mane, P.S. Patil, P.N. Bhosale, New J. Chem. 36, 1807 (2012)

    Article  Google Scholar 

  22. M.M. Salunkhe, R.R. Kharade, S.D. Kharade, S.S. Mali, P.S. Patil, P.N. Bhosale, Mater Res. Bull. 47, 3860 (2012)

    Article  Google Scholar 

  23. M. Gannouni, I.B. Assaker, R. Chtourou, Superlattices Microstruct. 61, 22 (2013)

    Article  Google Scholar 

  24. W. Ostwald, Lehrbuch der Allgemeinen Chemie, vol. 2, Part 1 (Leipzig, Germany, 1896)

  25. K.V. Khot, S.S. Mali, N.B. Pawar, R.M. Mane, V.V. Kondalkar, V.B. Ghanwat, P.S. Patil, C.K. Hong, J.H. Kim, J. Heo, P.N. Bhosale, J. Mater. Sci. Mater. Electron. 25, 3762 (2014)

    Article  Google Scholar 

  26. K.V. Khot, S.S. Mali, N.B. Pawar, R.R. Kharade, R.M. Mane, V.V. Kondalkar, P.B. Patil, P.S. Patil, C.K. Hong, J.H. Kim, J. Heo, P.N. Bhosale, New J. Chem. (2014). doi:10.1039/c4nj01319k

  27. S. Mahanty, D. Basak, F. Rueda, M. Leon, J. Electron Mat. 28, 559 (1999)

    Article  Google Scholar 

  28. M.M. Abbasa, A.A.M. Shehab, N.A. Hassan, A.K.A. Samuraee, Thin Solid Films 519, 4917 (2011)

    Article  Google Scholar 

  29. S.D. Kharade, N.B. Pawar, S.S. Mali, C.K. Hong, P.S. Patil, M.G. Gang, J.H. Kim, P.N. Bhosale, J. Mater. Sci. 48, 7300 (2013)

    Article  Google Scholar 

  30. C. Lal, I.P. Jain, Int. J. Hydrog. Energy 37, 3792 (2012)

    Article  Google Scholar 

  31. B.M.M. Rakib, G. Durand, J. Sol. Energy Mater. Sol. Cells 86, 399 (2005)

    Article  Google Scholar 

  32. V.P. Singh, R.S. Singh, G.W. Thompson, V. Jayaraman, S. Sanagapalli, V.K. Rangari, J. Sol. Energy Mater. Sol. Cells 81, 293 (2004)

    Article  Google Scholar 

  33. J.H. Lee, J. Thin Solid Films 515, 6089 (2007)

    Article  Google Scholar 

  34. A.M. Shehab, M.M. Abbas, N.A. Hassan, J. Coll. Educ. 12, 204 (2010)

  35. P.K. Gosh, M.K. Miltra, K.K. Chattopadhyay, Nanotechnology 7, 107 (2005)

  36. I.C. Ndukwe, Niger. J. Phys. 7, 10 (1998)

    Google Scholar 

  37. M.G. Sandoval-Paz, M. Sotelo-Lerma, J.J. Valenzuela-Jauregui, M. FloresAcosta, R. Ramirez-Bon, Thin Solid Films 5, 472 (2005)

    Google Scholar 

  38. S.V. Patil, R.M. Mane, N.B. Pawar, S.D. Kharade, S.S. Mali, P.S. Patil, G.L. Agawane, J.H. Kim, P.N. Bhosale, J. Mater. Sci. Mater. Electron. 24, 4669 (2013)

    Article  Google Scholar 

  39. E. Guneri, C. Ulutas, F. Kirmizigul, G. Altindemir, F. Gode, C. Gumus, Appl. Surf. Sci. 257, 1189 (2010)

    Article  Google Scholar 

  40. Z. Sun, S. Liufu, L. Chen, Dalton Trans. 39, 10883 (2010)

    Article  Google Scholar 

  41. S.S. Mali, C.A. Betty, P.N. Bhosale, P.S. Patil, Electrochim. Acta 59, 113 (2012)

    Article  Google Scholar 

  42. C. Garza, S. Shaji, A. Arato, E.P. Tijerina, G.A. Castillo, T.K. Das Roy, B. Krishnan Sol. Energy Mater. Sol. Cells. 95, 2001 (2011)

  43. N.B. Pawar, S.S. Mali, S.D. Kharade, M.G. Gang, P.S. Patil, J.H. Kim, C.K. Hong, P.N. Bhosale, Curr. Appl. Phys. 14, 508 (2014)

    Article  Google Scholar 

  44. Z. Zang, A. Nakamura, J. Temmyo, Opt. Express 21, 11448 (2013)

    Article  Google Scholar 

  45. Z. Zang, A. Nakamura, J. Temmyo, Mater. Lett. 92, 188 (2013)

    Article  Google Scholar 

  46. S.B. Ambade, R.S. Mane, S.S. Kale, S.H. Sonawane, A.V. Shaikh, S.H. Han, Appl. Surf. Sci. 253, 2123 (2006)

    Article  Google Scholar 

  47. S.S. Hongmei, Y. Gao, D. Qin, J. Chen, J. Mater. Chem. 22, 19207 (2012)

    Article  Google Scholar 

  48. S. Ikeda, R. Kamai, S.M. Lee, T. Yagi, T. Harada, M. Matsumura, Sol. Energy Mater. Sol. Cells 95, 1446 (2011)

    Article  Google Scholar 

  49. S.A. Vanalakar, S.S. Mali, R.C. Pawar, N.L. Tarwal, A.V. Moholkar, J.A. Kim, Y.B. Kwon, J.H. Kim, P.S. Patil, Electrochim. Acta 56, 2762 (2011)

    Article  Google Scholar 

  50. J. Lee, Curr. Appl Phys. 11, 103 (2011)

    Article  Google Scholar 

  51. R.S. Mane, B.R. Sankapal, C.D. Lokhande, Mater. Chem. Phys. 60, 196 (1999)

    Article  Google Scholar 

  52. V.D. Das, P.G. Ganesan, Mater. Chem. Phys. 57, 57 (1998)

    Article  Google Scholar 

  53. T.P. Chou, Q. Zhang, G.E. Fryxell, G. Cao, Adv. Mater. 19, 2588 (2007)

    Article  Google Scholar 

  54. Q. Zhang, T.P. Chou, B. Russo, S.A. Jenekhe, G. Cao, Angew. Chem. Int. Ed. 47, 2402 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

One of author Kishorkumar V. Khot is very much thankful to Department of Science and Technology (DST), New Delhi for providing DST-INSPIRE fellowship for financial support (Registration No. IF130751). This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2009-0094055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Popatrao N. Bhosale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khot, K.V., Mali, S.S., Kharade, R.R. et al. Novel-approach for fabrication of CdS thin films for photoelectrochemical solar cell application. J Mater Sci: Mater Electron 25, 5606–5617 (2014). https://doi.org/10.1007/s10854-014-2350-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2350-z

Keywords

Navigation