Skip to main content
Log in

Influence of samarium doping on structural and dielectric properties of strontium bismuth tantalate ceramics derived by molten salt synthesis route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Layered Sr(Bi1−xSmx)2Ta2O9 ceramics with x ranging from 0 to 0.10 (10 mol%) were fabricated by the low temperature molten salt synthesis route. X-ray powder diffraction studies revealed that the single phase orthorhombic layered perovskite structure is retained in all these compositions. Scanning electron microscopic studies on these ceramics confirmed the presence of well packed equiaxed plate shaped grains. The dielectric and electrical conductivity properties were studied in the 100 Hz–1 MHz frequency range at 300 K. Interestingly, the 10 mol% samarium doped SrBi2Ta2O9 ceramics exhibited high dielectric constant (εr = 155) and low dielectric loss (0.00298) compared to those of other compositions. The electrical conductivity of undoped and samarium doped ceramics increased linearly with increase in frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Sivakumar, M. Itoh, Chem. Mater. 23, 129 (2011)

    Article  Google Scholar 

  2. A.Z. Simõesc, E.C. Aguiara, C.S. Riccardia, E. Longoa, J.A. Varela, B. Mizaikoff, Mater. Chem. Phys. 124, 894 (2010)

    Article  Google Scholar 

  3. Sugandha, A.K. Jha, Mater. Charact. 65, 126 (2012)

    Article  Google Scholar 

  4. A. Srinivas, T. Sritharan, F.Y.C. Boey, J. Appl. Phys. 98, 036104 (2005)

    Article  Google Scholar 

  5. J.P.B. Silva, S.A.S. Rodrigues, K.C. Sekhar, M. Pereira, M.J.M. Gomes, J. Mater. Sci. Mater. Electron. 24, 5097 (2013)

    Article  Google Scholar 

  6. W. Lee, O. Kahya, C.T. Toh, B. Ozyilmaz, J.-H. Ahn, Nanotechnology 24, 475202 (2013)

    Article  Google Scholar 

  7. T. Sreesattabud, B.J. Gibbons, A. Watcharapasorn, S. Jiansirisomboon, Ceram. Int. 39, S521 (2013)

    Article  Google Scholar 

  8. H. Wang, T. Matsunaga, H.-T. Lin, A.M. Mottern, Smart Mater. Struct. 21, 025009 (2012)

    Article  Google Scholar 

  9. J. Pak, S. Park, K. Nam, G. Park, Thin Solid Films 518, 5642 (2010)

    Article  Google Scholar 

  10. M. Zhu, L. Sun, W.W. Li, W.L. Yu, Y.W. Li, Z.G. Hu, J.H. Chu, Mater. Res. Bull. 45, 1654 (2010)

    Article  Google Scholar 

  11. J. Glaum, M.J. Hoffman, Am. Ceram. Soc. 97, 665 (2014)

    Article  Google Scholar 

  12. M.H. Tang, Z.H. Sun, Y.C. Zhou, Y. Sugiyama, H. Ishiwara, Appl. Phys. Lett. 94, 212907 (2009)

    Article  Google Scholar 

  13. I. Coondoo, N. Panwar, V.S. Puli, R.S. Katiyar, Integr. Ferroelectr. Int J. 124, 1 (2011)

    Article  Google Scholar 

  14. Q. Yang, J.X. Cao, Y. Ma, Y.C. Zhou, AIP Adv. 3, 052134 (2013)

    Article  Google Scholar 

  15. S. Zhang, Y. Wen, H. Zhang, Powder Technol. 253, 464 (2014)

    Article  Google Scholar 

  16. H. He, J. Yin, Y. Li, Y. Zhang, H. Qiu, J. Xu, T. Xu, C. Wang, Appl. Catal. B 156–157, 35 (2014)

    Article  Google Scholar 

  17. C. Sikalidas, Advances in ceramics–synthesis and characterization, processing and specific applications (InTech, Croatia, 2011), pp. 75–100

    Book  Google Scholar 

  18. T. Kimura, T. Yamaguchi, Ceram. Int. 9, 13 (1983)

    Article  Google Scholar 

  19. T. Kimura, T. Takahashi, T. Yamaguchi, J. Mater. Sci. 15, 1491 (1980)

    Article  Google Scholar 

  20. T. Kimura, T. Yamaguchi, J. Mater. Sci. 17, 1863 (1982)

    Article  Google Scholar 

  21. T. Kimura, Y. Yoshido, J. Am. Ceram. Soc. 89, 869 (2006)

    Article  Google Scholar 

  22. T. Sato, T. Kimura, Ceram. Int. 34, 757 (2007)

    Article  Google Scholar 

  23. F.K. Lotgering, J. Inorg. Nucl. Chem. 9, 113 (1959)

    Article  Google Scholar 

  24. K. Babooram, Z.-G. Ye, Chem. Mater. 18, 532 (2006)

    Article  Google Scholar 

  25. S. Jin, I.M.M. Salvado, M.E.V. Costa, Mater. Res. Bull. 46, 432 (2011)

    Article  Google Scholar 

  26. Y.-M. Kan, G.-J. Zhang, P.-L. Wang, Y.-B. Cheng, J. Eur. Ceram. Soc. 28, 1641 (2008)

    Article  Google Scholar 

  27. Y.-M. Kan, X.H. Jin, G.J. Zhang, P.L. Wang, Y.B. Cheng, D.S.J. Yan, J. Mater. Chem. 14, 3566 (2004)

    Article  Google Scholar 

  28. D.K. Pradhan, B. Behera, P.R. Das, J. Mater. Sci. Mater. Electron. 23, 779 (2012)

    Article  Google Scholar 

  29. A.K. Jonscher, Dielectric relaxation in solids (Chelsea Dielectric Press, London, 1983)

    Google Scholar 

  30. M.M. Kumar, Z.-G. Ye, Phys. Rev. B 72, 024104 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Alagappa University, Karaikudi, India and Karunya University, Coimbatore, India for their assistance in characterization. This work was supported by Department of Science and Technology (Project No: SR/FT/CS-065/2009), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Harihara Venkataraman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannan, B.R., Venkataraman, B.H. Influence of samarium doping on structural and dielectric properties of strontium bismuth tantalate ceramics derived by molten salt synthesis route. J Mater Sci: Mater Electron 25, 4943–4948 (2014). https://doi.org/10.1007/s10854-014-2255-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2255-x

Keywords

Navigation