Skip to main content
Log in

Modeling defect reactions processes to study the impact of carbon on the production and conversion of A-centers in silicon

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The vacancy-oxygen (VO or A-center) defect is one of the most significant defects in Czochralski-grown silicon (Cz-Si). Here we investigate the effect of carbon on the formation of VO defect and its conversion upon annealing to the VO2 defect. Cz-Si samples with various carbon concentrations were irradiated by 2 MeV electrons. The formation of VO pair, its thermal stability and evolution and its conversion to the VO2 defect were previously monitored and studied by means of infrared (IR) spectroscopy. Modeling of the formation process showed that the VO concentration has a square root dependency on the carbon substitutional (Cs) concentration. The conversion of the VO to the VO2 defect decreases with the increase of the Cs concentration. The results are in agreement with the experimental observed dependency of the conversion ratio on the Cs concentration, since [VO] increases when [Cs] increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. E.N. Sgourou, D. Timarkaeva, C.A. Londos, D. Aliprantis, A. Chroneos, D. Caliste, P. Pochet, J. Appl. Phys. 113, 113506 (2013)

  2. A. Chroneos, C.A. Londos, E.N. Sgourou, P. Pochet, Appl. Phys. Lett. 99, 241901 (2011)

    Article  Google Scholar 

  3. C. Gao, X. Ma, J. Zhao, D. Yang, J. Appl. Phys. 113, 093511 (2013)

    Article  Google Scholar 

  4. H. Wang, A. Chroneos, C.A. Londos, E.N. Sgourou, U. Schwingenschlögl, Appl. Phys. Lett. 103, 052101 (2013)

    Article  Google Scholar 

  5. A. Chroneos, H. Bracht, R.W. Grimes, B.P. Uberuaga, Mater. Eng. B 72, 154 (2008)

  6. W. Lin, in Oxygen in Silicon, Semiconductors and Semimetals, vol. 42, ed. by F. Shimura (Academic, Boston, 1994), p. 9

    Google Scholar 

  7. B. Pajot, in Oxygen in Silicon, Semiconductors and Semimetals, vol. 42, ed. by F. Shimura (Academic, Boston, 1994), p. 191

    Google Scholar 

  8. W. Kaiser, H.L. Frisch, H. Reiss, Phys. Rev. 112, 1546 (1958)

    Article  Google Scholar 

  9. R.C. Newman, R. Jones, in “Oxygen in silicon” in Semiconductors and Semimetals, vol. 42, ed. by F. Shimura (Academic Press, Orlando, 1994), p. 289

    Google Scholar 

  10. G. Davies, R.C. Newman, in In Handbook of Semiconductors, vol. 3, ed. by S. Maharajan (Elsevier, Amsterdam, 1994), p. 1557

    Google Scholar 

  11. S.D. Brotherton, P. Bradley, J. Appl. Phys. 53, 5720 (1982)

    Article  Google Scholar 

  12. G.D. Watkins, J.W. Corbett, Phys. Rev. 121, 1001 (1961)

    Article  Google Scholar 

  13. J.W. Corbett, G.D. Watkins, R.S. Mc Donald, Phys. Rev. A 135, 1381 (1964)

    Article  Google Scholar 

  14. C.A. Londos, N.V. Sarlis, L.G. Fytros, K. Papastergiou, Phys. Rev. B 53, 6900 (1996)

    Article  Google Scholar 

  15. H.J. Stein, Mater. Sci. Forum 10–12, 935 (1986)

    Article  Google Scholar 

  16. V.V. Voronkov, R. Falster, J. Cryst. Growth 204, 462 (1999)

    Article  Google Scholar 

  17. V.V. Voronkov, R. Falster, J. Electrochem. Soc. 149, G167 (2002)

    Article  Google Scholar 

  18. G. Kissinger, J. Dabrowski, A. Sattler, C. Serving, T. Müller, H. Richter, W. von Ammon, J. Electrochem. Soc. 154, H454 (2007)

    Article  Google Scholar 

  19. G. Davies, A.S. Oates, R.C. Newman, R. Woolley, E.C. Lightowlers, M.J. Binns, J.G. Wilkes, J. Phys. C Solid State Phys. 19, 841 (1986)

    Article  Google Scholar 

  20. C.A. Londos, Semicond. Sci. Technol. 5, 645 (1990)

    Article  Google Scholar 

  21. V.V. Voronkov, R. Falster, C.A. Londos, E.N. Sgourou, A. Andrianakis, J. Appl. Phys. 110, 093510 (2011)

    Article  Google Scholar 

  22. A. Chroneos, C.A. Londos, E.N. Sgourou, J. Appl. Phys. 110, 093507 (2011)

    Article  Google Scholar 

  23. C.A. Londos, E.N. Sgourou, A. Chroneos, J. Mater. Sci. Mater. Electron. 25, 914 (2014)

    Article  Google Scholar 

  24. H. Wang, A. Chroneos, C.A. Londos, E.N. Sgourou, U. Schwingenschlögl, Sci. Rep. 4, 4909 (2014)

    Google Scholar 

  25. G. Lindström et al., Nucl. Instrum. Meth. Phys. Rev. A 466, 308 (2001)

    Article  Google Scholar 

  26. J.W. Corbett, G.D. Watkins, R.M. Chrenko, R.S. Mc, Donald. Phys. Rev. 121, 1015 (1961)

    Article  Google Scholar 

  27. A.R. Bean, R.C. Newman, R.S. Smith, J. Phys. Chem. Solids 31, 739 (1970)

    Article  Google Scholar 

  28. V.D. Ahmetov, V.V. Bolotov, Radiat. Eff. 52, 149 (1980)

    Article  Google Scholar 

  29. G. Davies, E.C. Lightowlers, R.C. Newman, A.S. Oates, Semicond. Sci. Technol. 2, 524 (1987)

    Article  Google Scholar 

  30. B.G. Svensson, J.L. Lindström, Phys. Rev. B 34, 8709 (1986)

    Article  Google Scholar 

  31. C.A. Londos, N.V. Sarlis, L.G. Fytros, Phys. Stat. Sol. A 163, 325 (1997)

    Article  Google Scholar 

  32. C.A. Londos, G.J. Antonaras, M.S. Potsidi, A. Misiuk, I.V. Antonova, V.V. Emtsev, J. Phys.: Condens. Matter 17, S2341 (2005)

    Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Vladimir Voronkov for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chroneos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Londos, C.A., Sgourou, E.N. & Chroneos, A. Modeling defect reactions processes to study the impact of carbon on the production and conversion of A-centers in silicon. J Mater Sci: Mater Electron 25, 4872–4876 (2014). https://doi.org/10.1007/s10854-014-2246-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2246-y

Keywords

Navigation