Skip to main content
Log in

Microstructure, dielectric and ferroelectric properties of barium zirconate titanate ceramics prepared by microwave sintering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Barium zirconate titanate ceramics were fabricated by microwave sintering. Effects of microwave sintering time on microstructure, dielectric and ferroelectric properties of barium zirconate titanate ceramics have been investigated. The result shows that the ceramic samples sintered at 2.5 kW for 15–30 min are single phase perovskite structure and there is no secondary phase observed. As the microwave sintering time extends, barium zirconate titanate ceramics become more uniform and the grain size increases. The data of dielectric properties indicate that the samples prepared by microwave sintering for 15–30 min are the ferroelectrics with diffuse phase transition and the diffuseness of phase transition weakens with the extending of microwave sintering time. As microwave sintering time increases, the remnant polarization increases initially and then decreases. Moreover, the remnant polarization and the coercive field of the samples sintered for 15 and 20 min decrease as measuring frequency increases, but the measuring frequency has little effect on ferroelectricity of the sample sintered for 30 min. The temperature dependences of hysteresis loops further prove that the samples are ferroelectrics with diffuse phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Sagar, S. Madolappa, N. Sharanappa, R.L. Raibagkar, Mater. Chem. Phys. 140, 119–125 (2013)

    Article  Google Scholar 

  2. P.A. Jha, A.K. Jha, Curr. Appl. Phys. 13, 1413–1419 (2013)

    Article  Google Scholar 

  3. X. Huang, J.J. Zhang, L.D. Ji, H.F. Qi, J.Y. Wang, J. Alloy. Compd. 592, 105–108 (2014)

    Article  Google Scholar 

  4. Q.W. Zhang, J.W. Zhai, H.Q. Li, Z.X. Yue, L.B. Kong, Phys. Status Solidi A 211, 788–794 (2014)

    Article  Google Scholar 

  5. P. Jarupoom, G. Rujijanagul, J. Appl. Phys. 114, 027018 (2013)

    Article  Google Scholar 

  6. S.K. Ghosh, M. Ganguly, S.K. Rout, S. Chanda, T.P. Sinha, Solid State Sci. 30, 68–77 (2014)

    Article  Google Scholar 

  7. N. Ding, X.G. Tang, X.D. Ding, Q.X. Liu, Y.P. Jiang, L.L. Jiang, J. Mater. Sci.: Mater. Electron. 25, 2305–2310 (2014)

    Google Scholar 

  8. P.A. Jha, A.K. Jha, J. Alloy. Compd. 513, 580–585 (2012)

    Google Scholar 

  9. M.L.V. Mahesh, V.V.B. Prasad, A.R. James, J. Mater. Sci.: Mater. Electron. 24, 4684–4692 (2013)

    Google Scholar 

  10. X.Y. Chen, W. Cai, C.L. Fu, H.Q. Chen, Q. Zhang, J. Sol-Gel, Sci. Techn. 57, 149–156 (2011)

    Google Scholar 

  11. R. Wendelbo, D.E. Akporiaye, A. Karlsson, M. Plassen, A. Olafsen, J. Eur. Ceram. Soc. 26, 849–859 (2006)

    Article  Google Scholar 

  12. N. Phungjitt, P. Panya, T. Bongkarn, N. Vittayakorn, Funct. Mater. Lett. 2, 169–174 (2009)

    Article  Google Scholar 

  13. H. Maiwa, Ceram. Int. 38S, S219–S223 (2012)

    Article  Google Scholar 

  14. T. Fujii, R. Nakamura, S. Ito, J. Jpn. Soc. Powder. Powder. Metall. 47, 1210–1215 (2000)

    Article  Google Scholar 

  15. S. Mahajan, O.P. Thakur, D.K. Bhattacharya, K. Sreenivas, Mater. Chem. Phys. 112, 858–862 (2008)

    Article  Google Scholar 

  16. Sugandha, A.K. Jha, Mater. Res. Bull. 48, 1553–1559 (2013)

  17. S. Swain, P. Kumar, D.K. Agrawal, Sonia, Ceram. Int. 39, 3205–3210 (2013)

  18. S. Sharma, R.K. Patel, C. Prakash, P. Kumar, Mater. Chem. Phys. 130, 191–195 (2011)

    Article  Google Scholar 

  19. V.R. Mudinepalli, S.H. Song, J.Q. Li, B.S. Murty, Mater. Chem. Phys. 142, 686–691 (2013)

    Article  Google Scholar 

  20. Y. Yu, X.S. Wang, X. Yao, Ceram. Int. 39, S335–S339 (2013)

    Article  Google Scholar 

  21. S.L. Jiang, Z.J. Zhu, L. Zhang, X. Xiong, J.Q. Yi, Y.K. Zeng, W. Liu, Q. Wang, K. Han, G.Z. Zhang, Mater. Sci. Eng., B 179, 36–40 (2014)

    Article  Google Scholar 

  22. S. Mahajan, O.P. Thakur, D.K. Bhattacharya, J. Am. Ceram. Soc. 92, 416–423 (2009)

    Article  Google Scholar 

  23. Z.X. Sun, Y.P. Pu, Z.J. Dong, Y. Hu, X.Y. Liu, P.K. Wang, Ceram. Int. 40, 3589–3594 (2014)

    Article  Google Scholar 

  24. Z.X. Sun, Y.P. Pu, Z.J. Dong, Y. Hu, X.Y. Liu, P.K. Wang, Vacuum 101, 228–232 (2014)

    Article  Google Scholar 

  25. X.G. Tang, Q.X. Liu, J. Wang, H.L.W. Chan, Appl. Phys. A 96, 945–952 (2009)

    Article  Google Scholar 

  26. H. Maima, J. Mater. Sci. 43, 6385–6390 (2008)

    Article  Google Scholar 

  27. W. Cai, C.L. Fu, J.C. Gao, X.Y. Chen, Q. Zhang, Integr. Ferroelectr. 113, 83–94 (2010)

    Article  Google Scholar 

  28. X.G. Tang, Q.X. Liu, J. Wang, H.L.W. Chan, Appl. Phys. A 96, 945–952 (2009)

    Article  Google Scholar 

  29. C. Kajtoch, J. Mater. Sci. 46, 1469–1473 (2011)

    Article  Google Scholar 

  30. K. Uchino, S. Nomura, Ferroelectrics 44, 55 (1982)

    Article  Google Scholar 

  31. X.G. Tang, J. Wang, X.X. Wang, H.L.W. Chan, Solid State Commun. 131, 163–168 (2004)

    Article  Google Scholar 

  32. X.G. Tang, K.H. Chew, H.L.W. Chan, Acta Mater. 52, 5177–5183 (2004)

    Article  Google Scholar 

  33. W. Cai, C.L. Fu, J.C. Gao, H.Q. Chen, J. Alloy. Compd. 480, 870–873 (2009)

    Article  Google Scholar 

  34. W. Cai, C.L. Fu, W.G. Hu, G. Chen, X.L. Deng, J. Alloy. Compd. 554, 64–71 (2013)

    Article  Google Scholar 

  35. X.H. Wang, X.Y. Deng, H.L. Bai, H. Zhou, W.G. Qu, L.T. Li, I.W. Chen, J. Am. Ceram. Soc. 89, 438–443 (2006)

    Article  Google Scholar 

  36. Z. Yu, C. Ang, R.Y. Guo, A.S. Bhalla, J. Appl. Phys. 92, 2655–2657 (2002)

    Article  Google Scholar 

  37. H.T. Zhang, X.Y. Deng, T. Li, W. Zhang, R.K. Chen, W.W. Tian, J.B. Li, X.H. Wang, L.T. Li, Appl. Phys. Lett. 97, 162913 (2010)

    Article  Google Scholar 

  38. H.C. Nie, X.F. Chen, N.B. Feng, G.S. Wang, X.L. Dong, Y. Gu, H.L. He, Y.S. Liu, Solid State Commun. 150, 101–103 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51102288, 51372283), the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ131402), Natural Science Foundation of Chongqing (CSTC2012jjA50017), the Research Foundation of Chongqing University of Science and Technology (CK2013B08) and the Cooperative Project of Academician Workstation of Chongqing University of Science and Technology (CKYS2014Z01, CKYS2014Y04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, W., Fu, C., Chen, G. et al. Microstructure, dielectric and ferroelectric properties of barium zirconate titanate ceramics prepared by microwave sintering. J Mater Sci: Mater Electron 25, 4841–4850 (2014). https://doi.org/10.1007/s10854-014-2242-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2242-2

Keywords

Navigation