Skip to main content
Log in

Study on electromechanical characterization of piezoelectric polymer PVDF in low-frequency band

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polyvinylidene fluoride (PVDF), a piezoelectric polymer material, is well known as one of the best smart materials to be used for tactile sensors in robots for its good performance. It has been used in many applications including sensors, actuators and surface acoustic wave (SAW) devices. This paper presents an experimental setup and experimental procedures for studying the electromechanical characterization of piezoelectric polymer films, by which the electromechanical characterization of the PVDF films under quasi-static loads and dynamic loads in a wide range of frequency can be researched. Through quasi-static tests, the stress–strain relationships of PVDF films in different directions were obtained. Furthermore, the viscoelastic and piezoelectric properties of PVDF films were analyzed based on the measurement results of dynamic tests under low frequency from 5 Hz to 200 Hz, and some suggestions of the applications of PVDF piezoelectric films in robot tactile sensor are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.S. Fearing, Int. J. Robot. Res. 3, 3–23 (1990)

    Article  Google Scholar 

  2. C.C. Wen, W. Fang, Sens. Actuat. Phys. A 145, 14–22 (2008)

    Article  Google Scholar 

  3. A. Kimoto, S. Shimada, Instrum. Meas. 62, 2870–2877 (2013)

    Article  Google Scholar 

  4. H. Kawai, J. Appl. Phys. 8, 975–976 (1969)

    Article  Google Scholar 

  5. A. Sahaya Grinspan, R. Gnanamoorthy, Coll. Surf. A: Physicochem. Eng. Asp. 356, 162 (2010)

  6. V.T. Rathod, Mahapatra D. R., Jain A., A. Gayathri, Sens. Actuat. Phys. A 163, 164 (2010)

  7. A.V. Shirinov, W.K. Schomburg, Sens. Actuat. Phys. A. 142, 48 (2008)

    Article  Google Scholar 

  8. V.S. Bystrov, E.V. Paramonova, I.K. Bdikin, A.V. Bystrova, R.C. Pullar, A.L. Kholkin, J. Mol. Model. 19, 3591 (2013)

    Article  Google Scholar 

  9. J. Dargahi, Sens. Actuat. Phys. A. 71, 89 (1998)

    Article  Google Scholar 

  10. V. Goodarzi, M. Kokabi, M.R. Kashani, A.R. Bahramian, J. Appl. Polym. Sci. 131, 16 (2014). doi:10.1002/app.40596

    Google Scholar 

  11. M.S. Kim, H.R. Ahn, S. Lee, C. Kim, Y.J. Kim, Sens. Actuat. Phys. A 212, 151 (2014)

    Article  Google Scholar 

  12. Y. Qin, M.M. Howlader, M.J. Deen, Y.M. Haddara, P.R. Selvaganapathy, Sens. Actuat. Chem. B 202, 758 (2014)

    Article  Google Scholar 

  13. G. Harsanyi, Sens. Rev. 20, 98 (2000)

    Article  Google Scholar 

  14. B. Sümer, B. Aksak, K. Şsahin, K. Chuengsatiansup, M. Sitti, Sensor Lett. 9, 457–463 (2011)

    Article  Google Scholar 

  15. E. Freire, O. Bianchi, J.N. Martins, E.E. Monteiro, M.M.C. Forte, J. Non-Cryst. Solids 358, 2674–2681 (2012)

    Article  Google Scholar 

  16. Y.Y. Zhang, S.Y. Jiang, M.Y. Fan, Y. K. Zeng, Y. Yu, J. G. He, J. Mater. Sci. Mater. Electron 24, 927–932

  17. T. Furukawa, M. Date, E. Fukada, J. Appl. Phys. 51, 1135–1141 (1980)

    Article  Google Scholar 

  18. D.M. Gookin, E.W. Jacobs, J.C. Hicks, Ferroelectr. 57, 89–98 (1984)

    Article  Google Scholar 

  19. T. Furukawa, G.E. Johnson, H.E. Bair, Y. Tajitsu, A. Chiba, E. Fukada, Ferroelectr. 32, 61 (1981)

    Article  Google Scholar 

  20. F. Oliveira, Y. Leterrier, J.A. Månson, O. Sereda, A. Neels, A. Dommann, D. Damjanovic, J. Polym. Sci. Pol. Phys. 52, 496–506 (2014)

    Article  Google Scholar 

  21. İ. Murat Koç, E Akça, Tribol. InT. 59, 321 (2013)

  22. A. Vinogradov, Encycl. Smart. Mater. (2002). doi:10.1002/0471216275.esm061

    Google Scholar 

  23. A. M. Vinogradov, V. Hugo Schmidt, G. F. Tuthill, G. W. Bohannan, Mech. Mater. 36, 1007 (2004)

  24. A.M. Vinogradov, F. Holloway, Ferroelectr. 226, 169 (1999)

    Article  Google Scholar 

  25. A.M. Vinogradov, S.C. Schumacher, E.M. Rassi, Int. J. Appl. Electrom. Mech. 22, 39 (2005)

    Google Scholar 

  26. V.H. Schmidt, D. Holloway, F. Vinogradov, D. Rosenberg, Appl. of Ferroelectrics (1996). doi:10.1109/ISAF.1996.602770

    Google Scholar 

  27. Y. Roh, V.V. Varadan, V.K. Varadan, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 49, 836 (2002)

  28. Z. Ghallabi, M. Arous, A. Kallel, I. Royaud, G. Boiteux, G. Seytre, In Solid Dielectr. (ICSD), 10th IEEE Int. Conf. (Potsdam, Germany, 2010), p. 1–3

  29. X.F. Qian, K. Sun, Theory of Piezoelectricity (China, Beijing, 1984), pp. 117–129

    Google Scholar 

  30. G.L. Oliveira, C.A. Costa, S.C.S. Teixeira, M.F. Costa, Polym. Testing 34, 10 (2014)

    Article  Google Scholar 

  31. X.G. Tang, M. Hou, R. Truss, J. Zou, W. Wang, Z.G. Dong, H. Huang, J. Appl. Polym. Sci. 122, 885 (2011)

    Article  Google Scholar 

  32. L. Yang, J.H. Qiu, H.L. Ji, K.T. Zhu, J. Wang, J. Mater. Sci.: Mater. Electron. 25, 2126 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang’an Di.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, C., Xue, S., Tong, J. et al. Study on electromechanical characterization of piezoelectric polymer PVDF in low-frequency band. J Mater Sci: Mater Electron 25, 4735–4742 (2014). https://doi.org/10.1007/s10854-014-2225-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2225-3

Keywords

Navigation